A–D–A-type S,N-heteropentacene-based hole transport materials for dopant-free perovskite solar cells

2015 ◽  
Vol 3 (34) ◽  
pp. 17738-17746 ◽  
Author(s):  
Christopher Steck ◽  
Marius Franckevičius ◽  
Shaik Mohammed Zakeeruddin ◽  
Amaresh Mishra ◽  
Peter Bäuerle ◽  
...  

Heteropentacene-based A–D–A type hole transport materials with suitable frontier orbital energy levels were synthesized and used in perovskite solar cells showing power conversion efficiencies up to 11.4%.

RSC Advances ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 4417-4424
Author(s):  
Ahmed Esmail Shalan ◽  
Mustafa K. A. Mohammed ◽  
Nagaraj Govindan

In recent times, perovskite solar cells (PSCs) have been of wide interest in solar energy research, which has ushered in a new era for photovoltaic power sources through the incredible enhancement in their power conversion efficiency (PCE).


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2592 ◽  
Author(s):  
Funeka Matebese ◽  
Raymond Taziwa ◽  
Dorcas Mutukwa

P-type wide bandgap semiconductor materials such as CuI, NiO, Cu2O and CuSCN are currently undergoing intense research as viable alternative hole transport materials (HTMs) to the spiro-OMeTAD in perovskite solar cells (PSCs). Despite 23.3% efficiency of PSCs, there are still a number of issues in addition to the toxicology of Pb such as instability and high-cost of the current HTM that needs to be urgently addressed. To that end, copper thiocyanate (CuSCN) HTMs in addition to robustness have high stability, high hole mobility, and suitable energy levels as compared to spiro-OMeTAD HTM. CuSCN HTM layer use affordable materials, require short synthesis routes, require simple synthetic techniques such as spin-coating and doctor-blading, thus offer a viable way of developing cost-effective PSCs. HTMs play a vital role in PSCs as they can enhance the performance of a device by reducing charge recombination processes. In this review paper, we report on the current progress of CuSCN HTMs that have been reported to date in PSCs. CuSCN HTMs have shown enhanced stability when exposed to weather elements as the solar devices retained their initial efficiency by a greater percentage. The efficiency reported to date is greater than 20% and has a potential of increasing, as well as maintaining thermal stability.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Guiming Peng ◽  
Xueqing Xu ◽  
Gang Xu

The ramping solar energy to electricity conversion efficiencies of hybrid organic-inorganic perovskite solar cells during the last five years have opened new doors to low-cost solar energy. The record power conversion efficiency has climbed to 19.3% in August 2014 and then jumped to 20.1% in November. In this review, the main achievements for perovskite solar cells categorized from a viewpoint of device structure are overviewed. The challenges and prospects for future development of this field are also briefly presented.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Md. Shahiduzzaman ◽  
Toshiharu Sakuma ◽  
Tetsuya Kaneko ◽  
Koji Tomita ◽  
Masao Isomura ◽  
...  

AbstractIn this study, a new, simple, and novel oblique electrostatic inkjet (OEI) technique is developed to deposit a titanium oxide (TiO2) compact layer (CL) on fluorine-doped tin oxide (FTO) substrate without the need for a vacuum environment for the first time. The TiO2 is used as electron transport layers (ETL) in planar perovskite solar cells (PSCs). This bottom-up OEI technique enables the control of the surface morphology and thickness of the TiO2 CL by simply manipulating the coating time. The OEI-fabricated TiO2 is characterized tested and the results are compared with that of TiO2 CLs produced by spin-coating and spray pyrolysis. The OEI-deposited TiO2 CL exhibits satisfactory surface coverage and smooth morphology, conducive for the ETLs in PSCs. The power-conversion efficiencies of PSCs with OEI-deposited TiO2 CL as the ETL were as high as 13.19%. Therefore, the present study provides an important advance in the effort to develop simple, low-cost, and easily scaled-up techniques. OEI may be a new candidate for depositing TiO2 CL ETLs for highly efficient planar PSCs, thus potentially contributing to future mass production.


RSC Advances ◽  
2019 ◽  
Vol 9 (59) ◽  
pp. 34152-34157 ◽  
Author(s):  
Junmei Cao ◽  
Fanning Meng ◽  
Liguo Gao ◽  
Shuzhang Yang ◽  
Yeling Yan ◽  
...  

The 2D Mxene material was successfully used as the counter electrode of the perovskite solar cell and achieved power conversion efficiencies of 13.84%.


2017 ◽  
Vol 5 (39) ◽  
pp. 10280-10287 ◽  
Author(s):  
Cong Chen ◽  
Guang Yang ◽  
Junjie Ma ◽  
Xiaolu Zheng ◽  
Zhiliang Chen ◽  
...  

We showed that perovskite solar cells employing Li-treated NiOxas a hole transport layer demonstrated excellent photovoltaic performance, and obtained a power conversion efficiency of up to 18.03%. In addition, the device possessed good long-term stability.


2019 ◽  
Vol 74 (8) ◽  
pp. 665-672 ◽  
Author(s):  
Julian Höcker ◽  
David Kiermasch ◽  
Philipp Rieder ◽  
Kristofer Tvingstedt ◽  
Andreas Baumann ◽  
...  

AbstractThe organic and hydrophobic polymer poly[N, N′-bis(4-butilphenyl)-N, N′-bis(phenyl)-benzidine] (polyTPD) represents a promising hole transport layer (HTL) for perovskite photovoltaics due to its suitable energy levels, whereby its highest occupied molecular orbital level matches well with the valence band level of methylammonium lead triiodide (CH3NH3PbI3, MAPbI3) perovskite. However, processing a perovskite layer from the solution on the surface of this organic material, is found to be difficult due to the surface properties of the latter. In this study, we evaluate efficient p-i-n type MAPbI3 perovskite solar cells employing differently processed polyTPD layers. We found that the surface coverage of the MAPbI3 perovskite layer strongly depends on the preparation method of the underlying polyTPD layer. By varying the solvents for the polyTPD precursor, its concentration, and by applying an optimised two-step perovskite deposition technique we increased both the surface coverage of the perovskite layer as well as the power conversion efficiency (PCE) of the corresponding solar cell devices. Our simple solvent-engineering approach demonstrates that no further interface modifications are needed for a successful preparation of efficient planar photovoltaic devices with PCEs in the range of 15 %–16 %.


2013 ◽  
Vol 49 (85) ◽  
pp. 9938 ◽  
Author(s):  
Elena Zaborova ◽  
Patricia Chávez ◽  
Rony Bechara ◽  
Patrick Lévêque ◽  
Thomas Heiser ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document