Reverse micelles-in-microspheres with sustained release of water-soluble combretastatin A4 phosphate for S180 tumor treatment

2016 ◽  
Vol 4 (4) ◽  
pp. 760-767 ◽  
Author(s):  
Liping wu ◽  
Liyan Qiu

CA4P-loaded microspheres (CA4P-MS) composed of PELA reverse micelles (CA4P-RM) and PLGA with a sea-island structure were prepared. This unique type of construction can greatly improve the encapsulation efficiency of water-soluble CA4P and provide sustained drug release and action for cancer therapy.

2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Teresa Nabais ◽  
Grégoire Leclair

Substituted amylose (SA) polymers were produced from high-amylose corn starch by etherification of its hydroxyl groups with chloroacetate. Amorphous high-amylose sodium carboxymethyl starch (HASCA), the resulting SA polymer, was spray-dried to obtain an excipient (SD HASCA) with optimal binding and sustained-release (SR) properties. Tablets containing different percentages of SD HASCA and tramadol hydrochloride were produced by direct compression and evaluated for dissolution. Once-daily and twice-daily SD HASCA tablets containing two common dosages of tramadol hydrochloride (100 mg and 200 mg), a freely water-soluble drug, were successfully developed. These SR formulations presented high crushing forces, which facilitate further tablet processing and handling. When exposed to both a pH gradient simulating the pH variations through the gastrointestinal tract and a 40% ethanol medium, a very rigid gel formed progressively at the surface of the tablets providing controlled drug-release properties. These properties indicated that SD HASCA was a promising and robust excipient for oral, sustained drug-release, which may possibly minimize the likelihood of dose dumping and consequent adverse effects, even in the case of coadministration with alcohol.


Clay Minerals ◽  
2017 ◽  
Vol 52 (4) ◽  
pp. 413-426 ◽  
Author(s):  
Bojan Čalija ◽  
Jela Milić ◽  
Jelena Janićijević ◽  
Aleksandra Daković ◽  
Danina Krajišnik

AbstractThis study investigated the potential of halloysite nanotubes (HNTs) to improve the sustained release properties of chitosan (CS) microparticles cross-linked ionically with tripolyphosphate (TPP). Composite CS-HNTs microparticles were obtained by a simple and eco-friendly procedure based on a coaxial extrusion technique. Prior to encapsulation, a water-soluble model drug, verapamil hydrochloride (VH), was adsorbed successfully on HNTs. The microparticles were characterized by optical microscopy, Fourier transform infrared (FTIR) spectroscopy, differential thermal analysis/ thermogravimetric analysis (DTA/TG) and evaluated for encapsulation efficiency and drug-release properties. The composite particles had a slightly deformed spherical shape and micrometric size with average perimeters ranging from 485.4 ± 13.3 to 492.4 ± 11.9 μm. The results of FTIR spectroscopy confirmed non-covalent interactions between CS and HNTs within composite particle structures. The DTA and TG studies revealed increased thermal stability of the composite particles in comparison to the CS-TPP particles. Drug adsorption on HNTs prior to encapsulation led to an increase in encapsulation efficiency from 19.6 ± 2.9 to 84.3 ± 1.9%. In contrast to the rapid release of encapsulated model drug from CS-TPP microparticles, the composite CS-HNTs microparticles released drug in a sustained manner, showing the best fit to the Bhaskar model. The results presented here imply that HNTs could be used to improve morphology, encapsulation efficiency and sustained drug-release properties of CS microparticles cross-linked ionically with TPP.


2020 ◽  
Vol 12 ◽  
Author(s):  
Sagar R. Pardeshi ◽  
Harshal A. Mistari ◽  
Rakhi S. Jain ◽  
Pankaj R. Pardeshi ◽  
Rahul L. Rajput ◽  
...  

Background: Moxifloxacin is a BCS class I drug used in the treatment of bacterial conjunctivitis and keratitis. Despite its high water solubility, it possesses limited bioavailability due to anatomical and physiological constraints associated with the eyes which required multiple administrations to achieve a therapeutic effect. Objective: In order to prolong drug release and to improve antibacterial efficacy for the treatment of bacterial keratitis and conjunctivitis, moxifloxacin loaded nanoemulsion was developed. Methods: The concentration of oil (oleic acid), surfactant (tween 80), and cosurfactant (propylene glycol) were optimized by employing a 3-level 2-factorial design of experiment for the development of nanoemulsion. The developed nanoemulsion was characterized by particle size distribution, viscosity, refractive index, pH, drug content and release, transmission electron microscopy (TEM), and antibacterial study. The compatibility of the drug with the excipients was accessed by Fourier transform infrared spectroscopy (FTIR). Result: The average globule size was found to be 198.20 nm. The TEM study reveals the globules were nearly spherical and are well distributed. In vitro drug release profile for nanoemulsion shown sustained drug release (60.12% at the end of 6 h) compared to drug solution, where complete drug released within 2 h. The antibacterial effectiveness of the drug-loaded nanoemulsion was improved against S. aureus compared with the marketed formulation. Conclusion: The formulated sustained release nanoemulsion could be a promising alternative to eye drop with improved patient compliance by minimizing dosing frequency with improved antibacterial activity.


RSC Advances ◽  
2018 ◽  
Vol 8 (66) ◽  
pp. 37623-37630 ◽  
Author(s):  
Qingli Huang ◽  
MingYan Li ◽  
LiLi Wang ◽  
Honghua Yuan ◽  
Meng Wang ◽  
...  

The rGO@CD@PEG@FA nanocomposite showed the stimulative effect of heat, pH response, and sustained drug release for cancer therapy


2019 ◽  
Vol 11 (2) ◽  
pp. 142-153
Author(s):  
Rutuja V. Deshmukh ◽  
Pavan Paraskar ◽  
S. Mishra ◽  
Jitendra Naik

Background: Nateglinide is an antidiabetic drug having biological half-life 1.5 h which shows a concise effect. Graphene oxide along with chitosan can be used as a nanocarrier for sustained release of Nateglinide. Objective: To develop Nateglinide loaded graphene oxide-chitosan nanocomposites and to evaluate for different characterization studies. Methods: Graphene Oxide (GO) was synthesized by improved hummer’s method and drug-loaded Graphene oxide - chitosan nanocomposites were prepared. Box Behnken design was used to carry out experiments. The nanocomposites were characterized for encapsulation efficiency and drug release. Morphology was studied using field emission scanning electron microscope and transmission electron microscope. An interaction between drug, polymer and GO was investigated by Fourier transform infrared spectroscopy and X-ray diffractometer along with in vitro drug release study. Results: The statistical evaluation of the design showed linear and quadratic models which are significant models for encapsulation efficiency (R1 0.6883, 0.9473) and drug loading (R2 0.6785, 0.9336), respectively. Fourier transform infrared spectroscopy showed the compatibility of GO, Chitosan and Nateglinide. X-ray diffractometer reveals the change in degree of crystallinity of drug. FE-SEM and TEM images confirmed the distribution of the drug within the nanocomposites. Design expert reveals that the concentration of GO has great influence on encapsulation efficiency. In Vitro drug release showed the sustained release of drug over the period of 12 h. Conclusion: GO-Chitosan nanocomposites can be used as a sustained release carrier system for Nateglinide to reduce dose frequency of drug as well as its probable side effects.


2016 ◽  
Vol 4 (14) ◽  
pp. 2477-2485 ◽  
Author(s):  
Jing Chen ◽  
Juan Ge ◽  
Baolin Guo ◽  
Kun Gao ◽  
Peter X. Ma

A conveniently fabricated electroactive nanofibrous composite scaffold serves as a sustained drug release system and promotes myoblast differentiation.


2018 ◽  
Vol 6 (7) ◽  
pp. 1035-1043 ◽  
Author(s):  
Jian He ◽  
Lisha Ai ◽  
Xin Liu ◽  
Hao Huang ◽  
Yuebin Li ◽  
...  

The NIR-laser-driven plasmonic photothermal and sustained drug release behavior of CuS–PTX/SiO2 nanocapsules show great synergistic chemo-photothermal therapeutic effects on cancer cells in vitro and in vivo.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1228
Author(s):  
Peipei Huo ◽  
Xinxu Han ◽  
Wenyu Zhang ◽  
Jing Zhang ◽  
Parveen Kumar ◽  
...  

The application of artemisinin (ART) in the treatment of malaria has been restricted to a certain degree due to its inherent limitations, such as short half-life, poor solubility, limited bioavailability, and re-crystallization. Electrospun nanofibers loaded with ART provide an excellent solution to these limitations and yield sustained drug release as well as inhibition of drug re-crystallization. In this study, ART-loaded polycaprolactone (PCL)/collagen (Col) nanofibers with different proportions of polymers were prepared. ART-loaded PCL/Col nanofibers were characterized, and further ART anti-crystallization and release behaviors were studied. SEM was used to observe the morphology of PCL/Col nanofibers. X-ray diffraction (XRD) was used to characterize the physical state of ART in ART-loaded PCL/Col nanofibers. Fourier transform infrared spectroscopy (FTIR), water contact angle measurement, weight loss, degree of swelling, and drug release experiments can verify the differences in performance of ART-loaded PCL/Col nanofibers due to different polymer ratios. The release curve was analyzed by kinetics, showing sustained release for up to 48 h, and followed the Fickian release mechanism, which was shown by the diffusion index value obtained from the Korsmeyer-Peppas equation.


Author(s):  
Meesala. Srinivasa Rao ◽  
M. S Chandra Goud ◽  
C. V. Reddy

Meloxicam has short biological half-life and is rapidly eliminated, frequent oral administration is necessary to maintain its therapeutic concentration, but this can increase chances of missing dose. This makes Meloxicam a good applicant for oral sustained release formulation. The objective of study was to develop in-situ gel formulations of Meloxicam for sustained release to reduce the dosing frequency in the treatment of rheumatoid arthritis. Method of Ion sensitive in-situ gelation was used in this study. Meloxicam In-situ gel formulations were prepared by varying concentrations of sodium alginate as a bio-degradable gel forming polymer, CaCl2 as a cross-linking agent and Chitosan/ HPMCK4/HPMCK15/Guar gum/Gellan gum/ Xantha gum/pectin were used as drug release rate controlling polymers. The formulations F11-F18 were assessed for Physical appearance, pH, in-vitro drug release, viscosity, in-vitro gelling capacity and drug content. FTIR, DSC and in-vivo drug kinetics studies was conducted for Meloxicam, excipients used and optimized formulation. Formulations showed an optimum viscosity that will allow ease of administration and swallowing. All formulations are shown pH between4.7-4.9, floating lag time was 2-3sec and floated for >12 hrs. In vitro drug release studies reporting that commercially available product Meloxicam SR has showed 99.92% drug release in 8 hrs and out of eight formulations F11 showing in-vitro drug release of 99.52% over a 12hrs extended period. FTIR studies revealed no interaction between drug and excipients used. The results of In-vivo kinetic studies are approving the better performance of the optimized formulation in comparison to marketed formulation, The Cmax, Tmax, half-life AUC values are confirming the same thing. In conclusion, Formulation (F11) was selected as optimized formulations could be offered as shows optimum sustained drug release compared to commercial formulation. Hence Meloxicam containing Chitosan as drug release controll


Sign in / Sign up

Export Citation Format

Share Document