Prediction of neutral noble gas insertion compounds with heavier pnictides: FNgY (Ng = Kr and Xe; Y = As, Sb and Bi)

2016 ◽  
Vol 18 (17) ◽  
pp. 12289-12298 ◽  
Author(s):  
Ayan Ghosh ◽  
Debashree Manna ◽  
Tapan K. Ghanty

Neutral noble gas insertion compounds involving arsenic, antimony and bismuth atoms wherein the triplet electronic state is the ground state are predicted for the first time.

1989 ◽  
Vol 44 (4) ◽  
pp. 313-315 ◽  
Author(s):  
Ulrich Magg ◽  
Helmut Birk ◽  
K. P. R. Nair ◽  
Harold Jones

Abstract The infrared absorption spectrum of the gas phase IF molecule in its ground state has been observed for the first time, using a diode laser spectrometer. The wavenumbers of transitions in the v = 1←0, and v = 2 ←1 bands have been measured with a nominal accuracy of +0.001 cm-1. These data were fitted along with the recently published microwave spectrum to produce an improved set Dunham T-parameters. Also the coefficients of the Dunham potential function for the electronic state of IF were determined by a direct fit to the experimental data.


1985 ◽  
Vol 50 (11) ◽  
pp. 2480-2492 ◽  
Author(s):  
Soňa Přádná ◽  
Dušan Papoušek ◽  
Jyrki Kauppinen ◽  
Sergei P. Belov ◽  
Andrei F. Krupnov ◽  
...  

Fourier transform spectra of the ν2 band of PH3 have been remeasured with 0.0045 cm-1 resolution. Ground state combination differences from these data have been fitted simultaneously with the microwave and submillimeterwave data to determine the ground state spectroscopical parameters of PH3 including the parameters of the Δk = ± 3n interactions. The correlation between the latter parameters has been discussed from the point of view of the existence of two equivalent effective rotational operators which are related by a unitary transformation. The ΔJ = 0, +1, ΔK = 0 (A1 ↔ A2, E ↔ E) rotational transitions in the ν2 and ν4 states have been measured for the first time by using a microwave spectrometer and a radiofrequency spectrometer with acoustic detection.


Author(s):  
Gourhari Jana ◽  
Himangshu Mondal ◽  
Pratim Kumar Chattaraj

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fridtjof Kielgast ◽  
Ivan Baev ◽  
Torben Beeck ◽  
Federico Pressacco ◽  
Michael Martins

AbstractMass-selected V and Fe monomers, as well as the heterodimer $${\text{Fe}}_1{\text{V}}_1$$ Fe 1 V 1 , were deposited on a Cu(001) surface. Their electronic and magnetic properties were investigated via X-ray absorption (XAS) and X-ray magnetic circular dichroism (XMCD) spectroscopy. Anisotropies in the magnetic moments of the deposited species could be examined by means of angle resolving XMCD, i.e. changing the X-ray angle of incidence. A weak adatom-substrate-coupling was found for both elements and, using group theoretical arguments, the ground state symmetries of the adatoms were determined. For the dimer, a switching from antiparallel to parallel orientation of the respective magnetic moments was observed. We show that this is due to the existence of a noncollinear spin-flop phase in the deposited dimers, which could be observed for the first time in such a small system. Making use of the two magnetic sublattices model, we were able to find the relative orientations for the dimer magnetic moments for different incidence angles.


2015 ◽  
Vol 17 (44) ◽  
pp. 29518-29530 ◽  
Author(s):  
Matthieu Sala ◽  
Stéphane Guérin ◽  
Fabien Gatti

We propose a new mechanism for the radiationless decay of photoexcited pyrazine to its ground electronic state involving a conical intersection between the dark Au(nπ) state and the ground state.


2008 ◽  
Vol 5 (5) ◽  
pp. 1215-1226 ◽  
Author(s):  
D. Weymann ◽  
R. Well ◽  
H. Flessa ◽  
C. von der Heide ◽  
M. Deurer ◽  
...  

Abstract. We investigated the dynamics of denitrification and nitrous oxide (N2O) accumulation in 4 nitrate (NO−3) contaminated denitrifying sand and gravel aquifers of northern Germany (Fuhrberg, Sulingen, Thülsfelde and Göttingen) to quantify their potential N2O emission and to evaluate existing concepts of N2O emission factors. Excess N2 – N2 produced by denitrification – was determined by using the argon (Ar) concentration in groundwater as a natural inert tracer, assuming that this noble gas functions as a stable component and does not change during denitrification. Furthermore, initial NO−3 concentrations (NO−3 that enters the groundwater) were derived from excess N2 and actual NO−3 concentrations in groundwater in order to determine potential indirect N2O emissions as a function of the N input. Median concentrations of N2O and excess N2 ranged from 3 to 89 μg N L−1 and from 3 to 10 mg N L−1, respectively. Reaction progress (RP) of denitrification was determined as the ratio between products (N2O-N + excess N2) and starting material (initial NO−3 concentration) of the process, characterizing the different stages of denitrification. N2O concentrations were lowest at RP close to 0 and RP close to 1 but relatively high at a RP between 0.2 and 0.6. For the first time, we report groundwater N2O emission factors consisting of the ratio between N2O-N and initial NO−3-N concentrations (EF1). In addition, we determined a groundwater emission factor (EF2) using a previous concept consisting of the ratio between N2O-N and actual NO−3-N concentrations. Depending on RP, EF(1) resulted in smaller values compared to EF(2), demonstrating (i) the relevance of NO−3 consumption and consequently (ii) the need to take initial NO−3-N concentrations into account. In general, both evaluated emission factors were highly variable within and among the aquifers. The site medians ranged between 0.00043–0.00438 for EF(1) and 0.00092–0.01801 for EF(2), respectively. For the aquifers of Fuhrberg and Sulingen, we found EF(1) median values which are close to the 2006 IPCC default value of 0.0025. In contrast, we determined significant lower EF values for the aquifers of Thülsfelde and Göttingen. Summing the results up, our study supports the substantial downward revision of the IPCC default EF5-g from 0.015 (1997) to 0.0025 (2006).


1967 ◽  
Vol 45 (7) ◽  
pp. 2355-2374 ◽  
Author(s):  
C. Weldon Mathews

The absorption spectrum of CF2 in the 2 500 Å region has been photographed at high dispersion, and the rotational structure of a number of bands has been analyzed. The analysis of the well-resolved subbands establishes that these are perpendicular- rather than parallel-type bands, as previously assigned. Further analysis shows that the upper and lower electronic states are of 1B1 and 1A1symmetries respectively, corresponding to a transition moment that is perpendicular to the plane of the molecule. In the upper electronic state, r0(CF) = 1.32 Å and [Formula: see text], while in the ground state, r0(CF) = 1.300 Å and [Formula: see text]. An investigation of the vibrational structure of the band system has shown that the vibrational numbering in ν2′ must be increased by one unit from earlier assignments, thus placing the 000–000 band near 2 687 Å (37 220 cm−1). A search between 1 300 and 8 500 Å showed two new band systems near 1 350 and 1 500 Å which have been assigned tentatively to the CF2 molecule.


2014 ◽  
Vol 69 (8-9) ◽  
pp. 397-402
Author(s):  
Leyla Özdemir ◽  
Sadiye Tuna

We have investigated the correlation, relativistic, and isotope shift effects on the fine structure levels in the ground state configuration for the antimony anion ( Sb-). Energies and radiative transition probabilities (for magnetic dipole, M1, and electric quadrupole, E2) have been obtained using the multiconfiguration Hartree-Fock method within the framework of the Breit-Pauli Hamiltonian. Therefore, the most important configuration interaction and relativistic effects have been included. Comparisons with other available works are presented. For some M1 and E2 lines the considered transition probabilities are reported for the first time


2011 ◽  
Vol 25 (19) ◽  
pp. 1619-1629 ◽  
Author(s):  
ARIJIT GHOSHAL ◽  
Y. K. HO

Ground states of a two-electron system in generalized screened potential (GSP) with screening parameter λ: [Formula: see text] where ∊ is a constant, have been investigated. Employing highly correlated and extensive wave functions in Ritz's variational principle, we have been able to determine accurate ground state energies and wave functions of a two-electron system for different values of the screening parameter λ and the constant ∊. Convergence of the ground state energies with the increase of the number of terms in the wave function are shown. We also report various geometrical expectation values associated with the system, ground state energies of the corresponding one-electron system and the ionization potentials of the system. Such a calculation for the ground state of a two-electron system in GSP is carried out for first time in the literature.


Sign in / Sign up

Export Citation Format

Share Document