scholarly journals Ionic liquids and deep eutectic solvents for lignocellulosic biomass fractionation

2017 ◽  
Vol 19 (4) ◽  
pp. 2636-2665 ◽  
Author(s):  
Dannie J. G. P. van Osch ◽  
Laura J. B. M. Kollau ◽  
Adriaan van den Bruinhorst ◽  
Sari Asikainen ◽  
Marisa A. A. Rocha ◽  
...  

State of the art overview of the fractionation of lignocellulosic biomass with ionic liquids and deep eutectic solvents.

2013 ◽  
Vol 1 (1) ◽  
pp. 3 ◽  
Author(s):  
Andre M da Costa Lopes ◽  
Karen G João ◽  
Ana Rita C Morais ◽  
Ewa Bogel-Łukasik ◽  
Rafał Bogel-Łukasik

2021 ◽  
pp. 64-78
Author(s):  
André M. da Costa Lopes

The use of renewable resources as feedstocks to ensure the production of goods and commodities for society has been explored in the last decades to switch off the overexploited and pollutant fossil-based economy. Today there is a strong movement to set bioeconomy as priority, but there are still challenges and technical limitations that must be overcome in the first place, particularly on biomass fractionation. For biomass to be an appellative raw material, an efficient and sustainable separation of its major components must be achieved. On the other hand, the technology development for biomass valorisation must follow green chemistry practices towards eco-friendly processes, otherwise no environmental leverage over traditional petrochemical technologies will be acquired. In this context, the application of green solvents, such as ionic liquids (ILs) and deep eutectic solvents (DES), in biomass fractionation is envisaged as promising technology that encompasses not only efficiency and environmental benefits, but also selectivity, which is a crucial demand to undertake cascade processes at biorefinery level. In particular, this article briefly discusses the disruptive achievements upon the application of ILs and DES in biomass delignification step towards an effective and selective separation of lignin from polysaccharides. The different physicochemical properties of these solvents, their interactions with lignin and their delignification capacity will be scrutinized, while some highlights will be given to the important characteristics of isolated lignin fractions for further valorisation. The advantages and disadvantages between ILs and DES in biomass delignification will be contrasted as well along the article.


Molecules ◽  
2019 ◽  
Vol 24 (22) ◽  
pp. 4012 ◽  
Author(s):  
Payam Kalhor ◽  
Khashayar Ghandi

Valorization of lignocellulosic biomass and food residues to obtain valuable chemicals is essential to the establishment of a sustainable and biobased economy in the modern world. The latest and greenest generation of ionic liquids (ILs) are deep eutectic solvents (DESs) and natural deep eutectic solvents (NADESs); these have shown great promise for various applications and have attracted considerable attention from researchers who seek versatile solvents with pretreatment, extraction, and catalysis capabilities in biomass- and biowaste-to-bioenergy conversion processes. The present work aimed to review the use of DESs and NADESs in the valorization of biomass and biowaste as pretreatment or extraction solvents or catalysis agents.


2021 ◽  
pp. 23-36
Author(s):  
Héctor Rodríguez

The pretreatment is a key step in the processing of lignocellulosic biomass for its transformation into chemicals and materials of biorenewable origin. Ionic liquids, with their characteristic set of unique properties, have the potential to be the basis of novel pretreatment processes with higher effectiveness and improved sustainability as compared to the current state-of-the-art processes. In this opinion paper, the author provides a perspective on possible processing strategies for this pretreatment with ionic liquids, identifying different advantages as well as challenges to be overcome.


2021 ◽  
Vol 3 ◽  
Author(s):  
Kwang Ho Kim ◽  
Chang Geun Yoo

The increased demands on renewable and sustainable products require enhancing the current conversion efficiency and expanding the utilization of biomass from a single component (i.e., cellulose) to entire biomass components in the biorefinery concept. Pretreatment solvent plays a critical role in various biorefinery processes. Recent pretreatment solvents such as organic co-solvents, acid hydrotropes, ionic liquids and deep eutectic solvents showed effective biomass fractionation as well as preservation of high-quality cellulose and lignin under mild conditions. Despite these significant enhancements in biomass pretreatment solvent, there are still many challenges, such as feedstock variety, valorization of non-cellulose components, and eco-friendliness of the applied catalyst and solvent. These technical, economic and environmental obstacles should be considered in future biomass pretreatment solvents. In particular, the development of feedstock-agnostic solvent with high fractionation performance for high quality and quantity of all three major components (i.e., cellulose, hemicellulose, and lignin) together would be an ideal direction.


2020 ◽  
Vol 16 ◽  
Author(s):  
Mahdieh Sharifi ◽  
Ramyakrishna Pothu ◽  
Rajender Boddula ◽  
Inamuddin

Background: There is a developing demand for innovation in petroleum systems replacements. Towards this aim, lignocellulosic biomass suggested as a possible sustainable source for the manufacturing of fuels and produced chemicals. The aims of this paper are to investigate different kinds of β-O-4 lignin model compounds for the production of value-added chemicals in presence of ionic liquids. Especially, a cheap β-O-4 lignin model Guaiacol glycerol ether (GGE) (Guaifenesin) is introduced to produce valuable chemicals and novel products. Methods: Research related to chemical depolymerization of lignocellulosic biomass activity is reviewed, the notes from different methods such as thermal and microwave collected during at least 10 years. So, this collection provides a good source for academic research and it gives an efficient strategy for the manufacturing of novel value-added chemicals at an industrial scale. Results: This research presented that ionic liquid microwave-assisted is a power saving, cost efficient, fast reaction, and clean way with high selectively and purity for production of high value chemicals rather that conversional heating. Guaiacol and catechol are some of these valuable chemicals that is produced from β-O-4 lignin model compounds with high word demands that are capable to produce in industry scale. Conclusion: The β-O-4 lignin model compounds such as Guaiacol glycerol ether (GGE) (Guaifenesin) are good platform for developing food materials, perfumery, biorefinery, and pharmaceutical industry by ionic liquids-assisted lignin depolymerization method.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Ana Bjelić ◽  
Brigita Hočevar ◽  
Miha Grilc ◽  
Uroš Novak ◽  
Blaž Likozar

AbstractConventional biorefinery processes are complex, engineered and energy-intensive, where biomass fractionation, a key functional step for the production of biomass-derived chemical substances, demands industrial organic solvents and harsh, environmentally harmful reaction conditions. There is a timely, clear and unmet economic need for a systematic, robust and affordable conversion method technology to become greener, sustainable and cost-effective. In this perspective, deep eutectic solvents (DESs) have been envisaged as the most advanced novel polar liquids that are entirely made of natural, molecular compounds that are capable of an association via hydrogen bonding interactions. DES has quickly emerged in various application functions thanks to a formulations’ simple preparation. These molecules themselves are biobased, renewable, biodegradable and eco-friendly. The present experimental review is providing the state of the art topical overview of trends regarding the employment of DESs in investigated biorefinery-related techniques. This review covers DESs for lignocellulosic component isolation, applications as (co)catalysts and their functionality range in biocatalysis. Furthermore, a special section of the DESs recyclability is included. For DESs to unlock numerous new (reactive) possibilities in future biorefineries, the critical estimation of its complexity in the reaction, separation, or fractionation medium should be addressed more in future studies.


Sign in / Sign up

Export Citation Format

Share Document