scholarly journals Biomass delignification with green solvents towards lignin valorisation: ionic liquids vs deep eutectic solvents

2021 ◽  
pp. 64-78
Author(s):  
André M. da Costa Lopes

The use of renewable resources as feedstocks to ensure the production of goods and commodities for society has been explored in the last decades to switch off the overexploited and pollutant fossil-based economy. Today there is a strong movement to set bioeconomy as priority, but there are still challenges and technical limitations that must be overcome in the first place, particularly on biomass fractionation. For biomass to be an appellative raw material, an efficient and sustainable separation of its major components must be achieved. On the other hand, the technology development for biomass valorisation must follow green chemistry practices towards eco-friendly processes, otherwise no environmental leverage over traditional petrochemical technologies will be acquired. In this context, the application of green solvents, such as ionic liquids (ILs) and deep eutectic solvents (DES), in biomass fractionation is envisaged as promising technology that encompasses not only efficiency and environmental benefits, but also selectivity, which is a crucial demand to undertake cascade processes at biorefinery level. In particular, this article briefly discusses the disruptive achievements upon the application of ILs and DES in biomass delignification step towards an effective and selective separation of lignin from polysaccharides. The different physicochemical properties of these solvents, their interactions with lignin and their delignification capacity will be scrutinized, while some highlights will be given to the important characteristics of isolated lignin fractions for further valorisation. The advantages and disadvantages between ILs and DES in biomass delignification will be contrasted as well along the article.

2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Shuqiang Zhu ◽  
Dongling Liu ◽  
Xinyue Zhu ◽  
Along Su ◽  
Haixia Zhang

Deep eutectic solvents (DESs) as a new kind of green solvents have been used to extract bioactive compounds but there are few applications in extracting chrysoidine dyes. In this study, we developed an ultrasonic-assisted extraction method with choline chloride/hydrogen bond donor (ChCl/HBD) DES for the extraction of chrysoidine G (COG), astrazon orange G (AOG), and astrazon orange R (AOR) in food samples. Some experimental parameters, such as extraction time, raw material/solvent ratio, and temperature, were evaluated and optimized as follows: the ratio of ChCl/HBD, 1 : 2 (v/v); the ratio of sample/DES, 1 : 10 (g/mL); extraction time, 20 min; extraction temperature, 50°C. Under the optimized conditions, the limits of detection (μg/mL) were 0.10 for COG and 0.06 for AOG and AOR. The relative standard deviations were in the range of 1.2–2.1%. The recoveries of the three dyes were in the range of 80.2–105.0%. By comparing with other commonly used solvents for extracting chrysoidine dyes, the advantages of DESs proved them to be potential extraction solvents for chrysoidine G, astrazon orange G, and astrazon orange R in foods.


Catalysts ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 65 ◽  
Author(s):  
Loredana Maiuolo ◽  
Vincenzo Algieri ◽  
Fabrizio Olivito ◽  
Antonio De Nino

The use of eco-compatible synthetic procedures in organic reactions and, in particular, in 1,3-dipolar cycloaddition reactions, has recently received a great deal of attention and considerable progress has been achieved in this area in the last years. This review summarizes the approaches currently employed to synthesize heterocyclic compounds by catalyzed 1,3-dipolar cycloadditions in green solvents in the last six years. Our choice to do a selection of the literature from 2014 to 2019 was made considering the absence of a recent review about this period, to our knowledge. Several examples to construct heterocycles by 1,3-dipolar cycloadditions will be discussed in this work subdivided in function of the most important class of non-conventional and green solvents, i.e., ionic liquids (ILs), deep eutectic solvents (DES), and water.


2018 ◽  
Vol 21 (6) ◽  
pp. 628-638 ◽  
Author(s):  
Henni Vanda ◽  
Yuntao Dai ◽  
Erica G. Wilson ◽  
Robert Verpoorte ◽  
Young Hae Choi

2017 ◽  
Vol 19 (4) ◽  
pp. 2636-2665 ◽  
Author(s):  
Dannie J. G. P. van Osch ◽  
Laura J. B. M. Kollau ◽  
Adriaan van den Bruinhorst ◽  
Sari Asikainen ◽  
Marisa A. A. Rocha ◽  
...  

State of the art overview of the fractionation of lignocellulosic biomass with ionic liquids and deep eutectic solvents.


2012 ◽  
Vol 549 ◽  
pp. 287-291
Author(s):  
Mang Zheng ◽  
Xiao Yan Li ◽  
Ru Qi Guan ◽  
Yan Mei Liu ◽  
Ya Juan Zhao ◽  
...  

Diethylene glycol (DEG) is the by-product of the hydration of ethylene oxide. With the rapid development of China's ethylene industry and the increased production of diethylene glycol, taking full advantage of the diethylene glycol resources to develop downstream products and expanding the use of diethylene glycol is becoming more and more important. In this paper, we introduce the applications and manufacturing methods of diethylene glycol, and elaborate the advantages and disadvantages of various methods. Furthermore, we present a new approach to synthesis industrial raw material diethylene glycol by ethylene glycol as raw material and ionic liquids as catalyst.


2020 ◽  
Vol 18 (6) ◽  
pp. 2031-2054 ◽  
Author(s):  
Abhishek Krishnan ◽  
Kannappan Panchamoorthy Gopinath ◽  
Dai-Viet N. Vo ◽  
Rajagopal Malolan ◽  
Vikas Madhav Nagarajan ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3652 ◽  
Author(s):  
Eduarda S. Morais ◽  
André M. da Costa Lopes ◽  
Mara G. Freire ◽  
Carmen S. R. Freire ◽  
João A. P. Coutinho ◽  
...  

A shift to a bioeconomy development model has been evolving, conducting the scientific community to investigate new ways of producing chemicals, materials and fuels from renewable resources, i.e., biomass. Specifically, technologies that provide high performance and maximal use of biomass feedstocks into commodities with reduced environmental impact have been highly pursued. A key example comprises the extraction and/or dissolution of polysaccharides, one of the most abundant fractions of biomass, which still need to be improved regarding these processes’ efficiency and selectivity parameters. In this context, the use of alternative solvents and the application of less energy-intensive processes in the extraction of polysaccharides might play an important role to reach higher efficiency and sustainability in biomass valorization. This review debates the latest achievements in sustainable processes for the extraction of polysaccharides from a myriad of biomass resources, including lignocellulosic materials and food residues. Particularly, the ability of ionic liquids (ILs) and deep eutectic solvents (DESs) to dissolve and extract the most abundant polysaccharides from natural sources, namely cellulose, chitin, starch, hemicelluloses and pectins, is scrutinized and the efficiencies between solvents are compared. The interaction mechanisms between solvent and polysaccharide are described, paving the way for the design of selective extraction processes. A detailed discussion of the work developed for each polysaccharide as well as the innovation degree and the development stage of dissolution and extraction technologies is presented. Their advantages and disadvantages are also identified, and possible synergies by integrating microwave- and ultrasound-assisted extraction (MAE and UAE) or a combination of both (UMAE) are briefly described. Overall, this review provides key information towards the design of more efficient, selective and sustainable extraction and dissolution processes of polysaccharides from biomass.


Crystals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 800 ◽  
Author(s):  
Michal Jablonský ◽  
Jozef Šima

In recent years, a plethora of extraction processes have been performed by a novel class of green solvents known as deep eutectic solvents (DESs), possessing several environmental, operational, and economic advantages proven by experience when compared to organic solvents and ionic liquids. The present review provides an organized overview of the use of DESs as extraction agents for the recovery of valuable substances and compounds from the original plant biomass, waste from its processing, and waste from the production and consumption of plant-based food. For the sake of simplicity and speed of orientation, the data are, as far as possible, arranged in a table in alphabetical order of the extracted substances. However, in some cases, the isolation of several substances is described in one paper and they are, therefore, listed together. The table further contains a description of the extracted phytomass, DES composition, extraction conditions, and literature sources. With regard to extracted value-added substances, this review addresses their pharmacological, therapeutic, and nutritional aspects. The review also includes an evaluation of the possibilities and limitations of using DESs to obtain value-added substances from phytomass.


2021 ◽  
pp. 62-79
Author(s):  
Sachind Prabha Padinhattath ◽  
Baiju Chenthamara ◽  
Ramesh L. Gardas

Because of industrialization and modernization, phenomenal changes have taken place in almost all spheres of life. Consequently, the consumption of energy resources and the cases of environmental hazards have risen to an unprecedentedly high level. A development model with due consideration to nature and an efficient utilization of energy sources has become the need of the hour, in order to ensure a sustainable balance between the environmental and technological needs. Recent studies have identified the suitability of ionic liquids (ILs), often labeled as ‘green solvents’, in the efficient utilization of energy resources and activities such as bio-extraction, pollution control, CO2 capture, waste management etc. in an environmentally friendly manner. The advent of magnetic ionic liquids (MILs) and deep eutectic solvents (DESs) have opened possibilities for a circular economic approach in this filed. This review intends to analyze the environmental and energy wise consumption of a wide variety of ionic liquids and their potential towards future.


Sign in / Sign up

Export Citation Format

Share Document