biomass valorisation
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 23)

H-INDEX

9
(FIVE YEARS 2)

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7769
Author(s):  
Zoran V. Simić ◽  
Mirjana Lj. Kijevčanin ◽  
Ivona R. Radović ◽  
Miha Grilc ◽  
Gorica R. Ivaniš

The limited reserves and well-known disadvantages of using fossil energy sources have increased the need for appropriate renewable substitutes in the production of various chemicals and materials. Biomass has been shown to be worthy of attention since it can be converted to biofuels and value-added chemicals relatively easily. The design of biomass valorisation process requires knowledge on the thermodynamic behaviour of the biomass-derived compounds, such as furfural and furfuryl alcohol. The thermodynamic and transport properties of the binary system furfural + furfuryl alcohol were studied at various temperatures and pressures. Density, speed of sound and refractive index were measured in the temperature range T = (288.15–345.15) K and viscosity was measured at temperatures up to 373.15 K, all at atmospheric pressure. Further, the density of pure components was obtained in the temperature range (293.15–413.15) K for furfural and (293.15–373.15) K for furfuryl alcohol at pressures up to 60.0 MPa. The obtained density values were correlated using the modified Tammann–Tait equation with an average absolute deviation lower than 0.009% for furfural and furfuryl alcohol. The optimised parameters were used for the calculation of the isothermal compressibility, the isobaric thermal expansivity, the internal pressure and the isobaric and isochoric specific heat capacities. The reported data are a valuable source of information for the further application of the investigated compounds.


2021 ◽  
Author(s):  
Petronela Cozma ◽  
Raluca-Maria Hlihor ◽  
Mihaela Rosca ◽  
Mariana Minut ◽  
Mariana Diaconu ◽  
...  

2021 ◽  
pp. 64-78
Author(s):  
André M. da Costa Lopes

The use of renewable resources as feedstocks to ensure the production of goods and commodities for society has been explored in the last decades to switch off the overexploited and pollutant fossil-based economy. Today there is a strong movement to set bioeconomy as priority, but there are still challenges and technical limitations that must be overcome in the first place, particularly on biomass fractionation. For biomass to be an appellative raw material, an efficient and sustainable separation of its major components must be achieved. On the other hand, the technology development for biomass valorisation must follow green chemistry practices towards eco-friendly processes, otherwise no environmental leverage over traditional petrochemical technologies will be acquired. In this context, the application of green solvents, such as ionic liquids (ILs) and deep eutectic solvents (DES), in biomass fractionation is envisaged as promising technology that encompasses not only efficiency and environmental benefits, but also selectivity, which is a crucial demand to undertake cascade processes at biorefinery level. In particular, this article briefly discusses the disruptive achievements upon the application of ILs and DES in biomass delignification step towards an effective and selective separation of lignin from polysaccharides. The different physicochemical properties of these solvents, their interactions with lignin and their delignification capacity will be scrutinized, while some highlights will be given to the important characteristics of isolated lignin fractions for further valorisation. The advantages and disadvantages between ILs and DES in biomass delignification will be contrasted as well along the article.


2021 ◽  
Vol 13 (8) ◽  
pp. 4200
Author(s):  
Ishtiaq Ahmed ◽  
Muhammad Anjum Zia ◽  
Huma Afzal ◽  
Shaheez Ahmed ◽  
Muhammad Ahmad ◽  
...  

In the late twentieth century, the only cost-effective opportunity for waste removal cost at least several thousand dollars, but nowadays, a lot of improvement has occurred. The biomass and waste generation problems attracted concerned authorities to identify and provide environmentally friendly sustainable solutions that possess environmental and economic benefits. The present study emphasises the valorisation of biomass and waste produced by domestic and industrial sectors. Therefore, substantial research is ongoing to replace the traditional treatment methods that potentially acquire less detrimental effects. Synthetic biology can be a unique platform that invites all the relevant characters for designing and assembling an efficient program that could be useful to handle the increasing threat for human beings. In the future, these engineered methods will not only revolutionise our lives but practically lead us to get cheaper biofuels, producing bioenergy, pharmaceutics, and various biochemicals. The bioaugmentation approach concomitant with microbial fuel cells (MFC) is an example that is used to produce electricity from municipal waste, which is directly associated with the loading of waste. Beyond the traditional opportunities, herein, we have spotlighted the new advances in pertinent technology closely related to production and reduction approaches. Various integrated modern techniques and aspects related to the industrial sector are also discussed with suitable examples, including green energy and other industrially relevant products. However, many problems persist in present-day technology that requires essential efforts to handle thoroughly because significant valorisation of biomass and waste involves integrated methods for timely detection, classification, and separation. We reviewed and proposed the anticipated dispensation methods to overcome the growing stream of biomass and waste at a distinct and organisational scale.


2021 ◽  
Vol 347 ◽  
pp. 107-108
Author(s):  
María José RODRÍGUEZ VÁSQUEZ

Tropical peatlands play an important role as carbon pools. Over the last decades, deforestation and degradation of Indonesian peatlands have led to a significant amount of carbon loss. Anthropogenic fires damage the ecology, the economy, and the public health of the entire region. This PhD is based on a case study in Ogan Komering Ilir (OKI) district of Indonesia. In OKI, traditional practices discard unwanted biomass with open fires, and often result in peat fires. We considered different scenarios of biomass valorisation to incite changes of practices, and to reduce peatland fires. We assessed the feasibility of converting aboveground biomass into bioenergy or other ligno-cellulosic materials. We estimated a business as usual (BAU) scenario by evaluating sources of emission of the current land management. We investigated potential mitigation scenarios, including biomass valorisation and peatland restoration, as alternative land management options. We evaluated the impact of these mitigation scenarios on climate change, according to their economic limitations. The analysis of GHG emissions in the BAU scenario shows that areas affected by fire release 70 ± 30, 140 ± 31 and 160 ± 27 Tonnes CO2-eq/ha/yr for degraded peatland, oil palm plantations and pulpwood plantations, respectively. Areas not affected by fires release 19 ± 12, 85 ± 21 and 108 ± 15 Tonnes CO2-eq/ha/yr, respectively. For the restoration scenario, we found similar GHG emissions of –0.9 Tonnes CO2-eq/ha/yr for the three land uses. Encouraging the biomass market in the areas where it is profitable for farmers could help reducing fire occurrences, without government investment. We instead suggest focusing government efforts on other methods such as incentive payments, or peatland restoration strategies, in the areas where biomass market is not economically viable. For the region, we find that biomass valorisation can reduce the GHG emissions by 4% to 6% compared to the BAU. As such, biomass valorisation is a promising alternative to current practices, potentially reducing the negative impact of fires while generating a new income for the population. 


2021 ◽  
Author(s):  
Yang Gao ◽  
Javier Remón ◽  
Avtar S. Matharu

This critical review summarises and analyses all the work conducted to date on the use of microwave-assisted hydrothermal processes for the conversion of biomass into hydrochar, bio-crude (bio-oil) and valuable chemicals.


Sign in / Sign up

Export Citation Format

Share Document