Ethanol production in syngas-fermenting Clostridium ljungdahlii is controlled by thermodynamics rather than by enzyme expression

2016 ◽  
Vol 9 (7) ◽  
pp. 2392-2399 ◽  
Author(s):  
H. Richter ◽  
B. Molitor ◽  
H. Wei ◽  
W. Chen ◽  
L. Aristilde ◽  
...  

A simplified overflow model (depicted as a rain barrel) is proposed to explain how ethanol is produced during syngas fermentation.

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6981
Author(s):  
Simge Sertkaya ◽  
Nuri Azbar ◽  
Haris Nalakath Abubackar ◽  
Tugba Keskin Gundogdu

Syngas fermentation via the Wood-Ljungdahl (WL) pathway is a promising approach for converting gaseous pollutants (CO and CO2) into high-value commodities. Because the WL involves several enzymes with trace metal components, it requires an adequate supply of micronutrients in the fermentation medium for targeted bioprocessing such as bioethanol production. Plackett-Burman statistical analysis was performed to examine the most efficient trace elements (Ni, Mg, Ca, Mn, Co, Cu, B, W, Zn, Fe, and Mo) and their concentrations for Clostridium ljungdahlii on ethanol production. Overall, 1.5 to 2.5 fold improvement in ethanol production could be achieved with designed trace element concentrations. The effects of tungsten and copper on ethanol and biomass production were determined to be the most significant, respectively. The model developed was statistically significant and has the potential to significantly decrease the cost of trace element solutions by 18–22%. This research demonstrates the critical importance of optimizing the medium for syngas fermentation in terms of product distribution and economic feasibility.


2014 ◽  
Vol 80 (8) ◽  
pp. 2410-2416 ◽  
Author(s):  
Areen Banerjee ◽  
Ching Leang ◽  
Toshiyuki Ueki ◽  
Kelly P. Nevin ◽  
Derek R. Lovley

ABSTRACTThe development of tools for genetic manipulation ofClostridium ljungdahliihas increased its attractiveness as a chassis for autotrophic production of organic commodities and biofuels from syngas and microbial electrosynthesis and established it as a model organism for the study of the basic physiology of acetogenesis. In an attempt to expand the genetic toolbox forC. ljungdahlii, the possibility of adapting a lactose-inducible system for gene expression, previously reported forClostridium perfringens, was investigated. The plasmid pAH2, originally developed forC. perfringenswith agusAreporter gene, functioned as an effective lactose-inducible system inC. ljungdahlii. Lactose induction ofC. ljungdahliicontaining pB1, in which the gene for the aldehyde/alcohol dehydrogenase AdhE1 was downstream of the lactose-inducible promoter, increased expression ofadhE130-fold over the wild-type level, increasing ethanol production 1.5-fold, with a corresponding decrease in acetate production. Lactose-inducible expression ofadhE1in a strain in whichadhE1and theadhE1homologadhE2had been deleted from the chromosome restored ethanol production to levels comparable to those in the wild-type strain. Inducing expression ofadhE2similarly failed to restore ethanol production, suggesting thatadhE1is the homolog responsible for ethanol production. Lactose-inducible expression of the four heterologous genes necessary to convert acetyl coenzyme A (acetyl-CoA) to acetone diverted ca. 60% of carbon flow to acetone production during growth on fructose, and 25% of carbon flow went to acetone when carbon monoxide was the electron donor. These studies demonstrate that the lactose-inducible system described here will be useful for redirecting carbon and electron flow for the biosynthesis of products more valuable than acetate. Furthermore, this tool should aid in optimizing microbial electrosynthesis and for basic studies on the physiology of acetogenesis.


Catalysts ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 59 ◽  
Author(s):  
Carolina Benevenuti ◽  
Alanna Botelho ◽  
Roberta Ribeiro ◽  
Marcelle Branco ◽  
Adejanildo Pereira ◽  
...  

Fermentation of gases from biomass gasification, named syngas, is an important alternative process to obtain biofuels. Sequential experimental designs were used to increase cell growth and ethanol production during syngas fermentation by Clostridium carboxidivorans. Based on ATCC (American Type Culture Collection) 2713 medium composition, it was possible to propose a best medium composition for cell growth, herein called TYA (Tryptone-Yeast extract-Arginine) medium and another one for ethanol production herein called TPYGarg (Tryptone-Peptone-Yeast extract-Glucose-Arginine) medium. In comparison to ATCC® 2713 medium, TYA increased cell growth by 77%, reducing 47% in cost and TPYGarg increased ethanol production more than four-times, and the cost was reduced by 31%. In 72 h of syngas fermentation in TPYGarg medium, 1.75-g/L of cells, 2.28 g/L of ethanol, and 0.74 g/L of butanol were achieved, increasing productivity for syngas fermentation.


2012 ◽  
Vol 79 (4) ◽  
pp. 1102-1109 ◽  
Author(s):  
Ching Leang ◽  
Toshiyuki Ueki ◽  
Kelly P. Nevin ◽  
Derek R. Lovley

ABSTRACTMethods for genetic manipulation ofClostridium ljungdahliiare of interest because of the potential for production of fuels and other biocommodities from carbon dioxide via microbial electrosynthesis or more traditional modes of autotrophy with hydrogen or carbon monoxide as the electron donor. Furthermore, acetogenesis plays an important role in the global carbon cycle. Gene deletion strategies required for physiological studies ofC. ljungdahliihave not previously been demonstrated. An electroporation procedure for introducing plasmids was optimized, and four different replicative origins for plasmid propagation inC. ljungdahliiwere identified. Chromosomal gene deletion via double-crossover homologous recombination with a suicide vector was demonstrated initially with deletion of the gene for FliA, a putative sigma factor involved in flagellar biogenesis and motility inC. ljungdahlii. Deletion offliAyielded a strain that lacked flagella and was not motile. To evaluate the potential utility of gene deletions for functional genomic studies and to redirect carbon and electron flow, the genes for the putative bifunctional aldehyde/alcohol dehydrogenases,adhE1andadhE2, were deleted individually or together. Deletion ofadhE1, but notadhE2, diminished ethanol production with a corresponding carbon recovery in acetate. The double deletion mutant had a phenotype similar to that of theadhE1-deficient strain. Expression ofadhE1intranspartially restored the capacity for ethanol production. These results demonstrate the feasibility of genetic investigations of acetogen physiology and the potential for genetic manipulation ofC. ljungdahliito optimize autotrophic biocommodity production.


2015 ◽  
Vol 81 (24) ◽  
pp. 8379-8391 ◽  
Author(s):  
Jason M. Whitham ◽  
Oscar Tirado-Acevedo ◽  
Mari S. Chinn ◽  
Joel J. Pawlak ◽  
Amy M. Grunden

ABSTRACTClostridium ljungdahliiis an important synthesis gas-fermenting bacterium used in the biofuels industry, and a preliminary investigation showed that it has some tolerance to oxygen when cultured in rich mixotrophic medium. Batch cultures not only continue to grow and consume H2, CO, and fructose after 8% O2exposure, but fermentation product analysis revealed an increase in ethanol concentration and decreased acetate concentration compared to non-oxygen-exposed cultures. In this study, the mechanisms for higher ethanol production and oxygen/reactive oxygen species (ROS) detoxification were identified using a combination of fermentation, transcriptome sequencing (RNA-seq) differential expression, and enzyme activity analyses. The results indicate that the higher ethanol and lower acetate concentrations were due to the carboxylic acid reductase activity of a more highly expressed predicted aldehyde oxidoreductase (CLJU_c24130) and thatC. ljungdahlii's primary defense upon oxygen exposure is a predicted rubrerythrin (CLJU_c39340). The metabolic responses of higher ethanol production and oxygen/ROS detoxification were found to be linked by cofactor management and substrate and energy metabolism. This study contributes new insights into the physiology and metabolism ofC. ljungdahliiand provides new genetic targets to generateC. ljungdahliistrains that produce more ethanol and are more tolerant to syngas contaminants.


Fermentation ◽  
2020 ◽  
Vol 6 (3) ◽  
pp. 68 ◽  
Author(s):  
Sahar Safarian ◽  
Runar Unnthorsson ◽  
Christiaan Richter

This study presents a new simulation model developed with ASPEN Plus of waste biomass gasification integrated with syngas fermentation and product recovery units for bioethanol production from garden waste as a lignocellulosic biomass. The simulation model includes three modules: gasification, fermentation, and ethanol recovery. A parametric analysis is carried out to investigate the effect of gasification temperature (500–1500 °C) and equivalence ratio (0.2–0.6) on the gasification performance and bioethanol production yield. The results reveal that, for efficient gasification and high ethanol production, the operating temperature range should be 700–1000 °C, as well as an equivalence ratio between 0.2 and 0.4. At optimal operating conditions, the bioethanol production yield is 0.114 kg/h per 1 kg/h input garden waste with 50% moisture content. It is worth mentioning that this parameter increases to 0.217 kgbioethanol/kggarden waste under dry-based conditions.


2020 ◽  
Author(s):  
Eleni Liakakou ◽  
Alba Infantes ◽  
Berend Vreugdenhil ◽  
Anke Neumann

The development of lignin derived energy products is one way to increase the value of biorefinery residues, which is the scope of the EU project AMBITION. Gasification of (lignin-rich) biorefinery residues, followed by product gas cleaning and anaerobic fermentation, offers a potential to produce higher added-value products such as biofuels and chemicals. MILENA indirect gasification allows complete fuel conversion and produces a high value gas composed of CO, H2 and CO2, as well as compounds such as CH4, C2-C4 gases, benzene, toluene and xylene (BTX). The separation of the most valuable components of the product gas is a good way to maximize the value from the feedstock via co-production schemes. The product gas, after appropriate cleaning to remove impurities that can reduce the fermentability of syngas, can be applied in the gas fermentation process. Some anaerobic microorganisms, known as acetogens, can be used as a biocatalyst for the conversion of syngas into short-chain organic acids and alcohols, like acetate, ethanol, butanol, butan-2,3-diol and butyric acid. The ability of these microorganisms to withstand some of the impurities contained in the syngas and their flexibility to use different mixtures of CO and/or CO2 and H2 makes these bacteria an attractive alternative to the chemical catalytic processes. Despite these advantages, the integration of gasification with syngas fermentation is still in an early stage of development, where many questions exist concerning the syngas quality needed in the fermentation process. The challenge is to define the optimum gasification conditions for this type of feedstock that will provide a H2:CO:CO2 ratio at values suitable for syngas fermentation, as well as to identify and remove the compounds that can inhibit the performance of the microorganisms. In this work a first attempt to combine the two processes is presented.A lignin rich feedstock was gasified with steam at 780°C using MILENA indirect gasifier, at TNO. The product gas after removal of the main impurities, consisted of CO, H2, CO2, N2, CH4 and traces of other gaseous hydrocarbons, benzene and H2S. The influence of the obtained syngas quality and composition was evaluated in the fermentation process, at KIT. For comparison, product gas from beech wood gasification after cleaning was also evaluated in the fermentation process under the same conditions.The process involved growing cells in a batch system under continuous flow of biomass-derived gas. The strain used in this work is Clostridium ljungdahlii. The fermentation of both beech wood and lignin-derived syngas was successful, since no inhibition was observed. The carbon fixation onto products achieved for both cases was approximately 55%, while a slightly higher ethanol production was observed with the lignin-derived syngas. The total productivity (including both acetate and ethanol) at the end-point was 0.18 g/L/h for both fermentations.


2018 ◽  
Vol 156 ◽  
pp. 03025 ◽  
Author(s):  
Irika Anggraini ◽  
Made Tri Ari Penia Kresnowati ◽  
Ronny Purwadi ◽  
Tjandra Setiadi

Bioconversion of C-1 carbon in syngas through microbial fermentation presents a huge potential to be further explored for ethanol production. Syngas can be obtained from the gasification of lignocellulosic biomass, by which most of carbon content of the biomass was converted into CO and CO2. These gases could be further utilized by carbon-fixing microorganism such as Clostridium sp. to produce ethanol as the end product. In order to obtain an optimum process, a robust and high performance strain is required and thus high ethanol yield as the main product can be expected. In this study, series of batch fermentation was carried out to select high performance strains for ethanol production. Bottle serum fermentations were performed using CO-gas as the sole carbon source to evaluate the potential of some Clostridia species such as Clostridium ljungdahlii, C. ragsdalei, and C. carboxidovorans in producing ethanol at various concentration of yeast extract as the organic nitrogen source, salt concentration, and buffer composition. Strain with the highest ethanol production in the optimum media will be further utilized in the upscale fermentation.


Sign in / Sign up

Export Citation Format

Share Document