Tannic acid stabilized silver nanoparticles for inkjet printing of conductive flexible electronics

RSC Advances ◽  
2016 ◽  
Vol 6 (87) ◽  
pp. 83720-83729 ◽  
Author(s):  
Nan Zhang ◽  
Jing Luo ◽  
Ren Liu ◽  
Xiaoya Liu

Tannic acid stabilized silver nanoparticles were prepared as conductive inks for fabricating conductive patterns using a common color inkjet printer.

2020 ◽  
Vol 64 (5) ◽  
pp. 50405-1-50405-5
Author(s):  
Young-Woo Park ◽  
Myounggyu Noh

Abstract Recently, the three-dimensional (3D) printing technique has attracted much attention for creating objects of arbitrary shape and manufacturing. For the first time, in this work, we present the fabrication of an inkjet printed low-cost 3D temperature sensor on a 3D-shaped thermoplastic substrate suitable for packaging, flexible electronics, and other printed applications. The design, fabrication, and testing of a 3D printed temperature sensor are presented. The sensor pattern is designed using a computer-aided design program and fabricated by drop-on-demand inkjet printing using a magnetostrictive inkjet printhead at room temperature. The sensor pattern is printed using commercially available conductive silver nanoparticle ink. A moving speed of 90 mm/min is chosen to print the sensor pattern. The inkjet printed temperature sensor is demonstrated, and it is characterized by good electrical properties, exhibiting good sensitivity and linearity. The results indicate that 3D inkjet printing technology may have great potential for applications in sensor fabrication.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1007
Author(s):  
Azam Ali ◽  
Mariyam Sattar ◽  
Fiaz Hussain ◽  
Muhammad Humble Khalid Tareen ◽  
Jiri Militky ◽  
...  

The versatile one-pot green synthesis of a highly concentrated and stable colloidal dispersion of silver nanoparticles (Ag NPs) was carried out using the self-assembled tannic acid without using any other hazardous chemicals. Tannic acid (Plant-based polyphenol) was used as a reducing and stabilizing agent for silver nitrate in a mild alkaline condition. The synthesized Ag NPs were characterized for their concentration, capping, size distribution, and shape. The experimental results confirmed the successful synthesis of nearly spherical and highly concentrated (2281 ppm) Ag NPs, capped with poly-tannic acid (Ag NPs-PTA). The average particle size of Ag NPs-PTA was found to be 9.90 ± 1.60 nm. The colloidal dispersion of synthesized nanoparticles was observed to be stable for more than 15 months in the ambient environment (25 °C, 65% relative humidity). The synthesized AgNPs-PTA showed an effective antimicrobial activity against Staphylococcus Aureus (ZOI 3.0 mM) and Escherichia coli (ZOI 3.5 mM). Ag NPs-PTA also exhibited enhanced catalytic properties. It reduces 4-nitrophenol into 4-aminophenol in the presence of NaBH4 with a normalized rate constant (Knor = K/m) of 615.04 mL·s−1·mg−1. For comparison, bare Ag NPs show catalytic activity with a normalized rate constant of 139.78 mL·s−1·mg−1. Furthermore, AgNPs-PTA were stable for more than 15 months under ambient conditions. The ultra-high catalytic and good antimicrobial properties can be attributed to the fine size and good aqueous stability of Ag NPs-PTA. The unique core-shell structure and ease of synthesis render the synthesized nanoparticles superior to others, with potential for large-scale applications, especially in the field of catalysis and medical.


Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1525
Author(s):  
Sergey Vorobyev ◽  
Elena Vishnyakova ◽  
Maxim Likhatski ◽  
Alexander Romanchenko ◽  
Ivan Nemtsev ◽  
...  

Carey Lea silver hydrosol is a rare example of very concentrated colloidal solutions produced with citrate as only protective ligands, and prospective for a wide range of applications, whose properties have been insufficiently studied up to now. Herein, the reactivity of the immobilized silver nanoparticles toward oxidation, sulfidation, and sintering upon their interaction with hydrogen peroxide, sulfide ions, and chlorocomplexes of Au(III), Pd(II), and Pt(IV) was investigated using SEM and X-ray photoelectron spectroscopy (XPS). The reactions decreased the number of carboxylic groups of the citrate-derived capping and promoted coalescence of 7 nm Ag NPs into about 40 nm ones, excluding the interaction with hydrogen peroxide. The increased nanoparticles form loose submicrometer aggregates in the case of sulfide treatment, raspberry-like micrometer porous particles in the media containing Pd(II) chloride, and densely sintered particles in the reaction with inert H2PtCl6 complexes, probably via the formation of surface Ag-Pt alloys. The exposure of Ag NPs to HAuCl4 solution produced compact Ag films along with nanocrystals of Au metal and minor Ag and AgCl. The results are promising for chemical ambient temperature sintering and rendering silver-based nanomaterials, for example, for flexible electronics, catalysis, and other applications.


2016 ◽  
Vol 39 (4) ◽  
pp. 465-473 ◽  
Author(s):  
Tae Yoon Kim ◽  
Song-Hyun Cha ◽  
Seonho Cho ◽  
Youmie Park

2013 ◽  
Vol 1 (19) ◽  
pp. 3244 ◽  
Author(s):  
Michael Layani ◽  
Ido Cooperstein ◽  
Shlomo Magdassi

2020 ◽  
Author(s):  
Edyta Beata Hendiger ◽  
Marcin Padzik ◽  
Agnieszka Żochowska ◽  
Wanda Baltaza ◽  
Gabriela Olędzka ◽  
...  

Abstract Background: Free living amoebae of Acanthamoeba genus are cosmopolitan, widely distributed protozoans causing severe, vision-threatening corneal infection known as Acanthamoeba keratitis (AK). Majority of the increasing number of AK cases are associated with contact lenses use. Due to lack of effective therapies against AK, proper eye hygiene and effective contact lenses disinfection are crucial in prevention of this infection. Currently available multipurpose contact lens disinfection systems are not fully effective against Acanthamoeba trophozoites and cysts. There is an urgent need to increase the disinfecting activity of these systems to prevent Acanthamoeba keratitis infections. Synthesized nanoparticles have been recently studied and proposed as a new generation of anti-microbial agents. It is also known that plant metabolites, including tannins, present anti-parasitic activity. The aim of this study was to evaluate the anti-amoebic activity and cytotoxicity of the tannic acid-modified silver nanoparticles (AgTANPs) conjugated with the selected multipurpose contact lens solutions.Methods: The anti-amoebic activity of pure contact lens care solutions and nanoparticles conjugated with contact lens care solutions were examined in vitro by colorimetric assay, based on the oxido-reduction of AlamarBlue. The cytotoxicity assays were performed using a fibroblast HS-5 (ATCC CRL-11882) cell line. The results were statistically analyzed by ANOVA and Student-Newman-Keuls tests using the p<0.05 level of a statistical significance.Results: The obtained results showed that nanoparticles enhanced anti-Acanthamoeba activity of the tested contact lens solutions without increasing their cytotoxicity profile. The activity is enhanced within minimal disinfection time recommended by the manufacturer.Conclusions: The conjugation of the selected contact lens solutions with AgTANPs might be a novel and promising approach as a part of preventive actions of Acanthamoeba keratitis infections among contact lens users.


2020 ◽  
Vol 231 ◽  
pp. 115746 ◽  
Author(s):  
Zahid Hanif ◽  
Zeeshan Ahmad Khan ◽  
Mohd Farhan Siddiqui ◽  
Muhammad Zakria Tariq ◽  
Seungkyung Park ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document