The hypothermic preservation of mammalian cells with assembling extracellular-matrix-mimetic microparticles

2017 ◽  
Vol 5 (8) ◽  
pp. 1535-1541 ◽  
Author(s):  
Jing Yang ◽  
Chao Pan ◽  
Xiaojie Sui ◽  
Nana Cai ◽  
Jiamin Zhang ◽  
...  

The reversible assembly of magnetic alginate microparticles could mimic the extracellular matrix for efficient and facile hypothermic cell preservation.

Author(s):  
Aniel Moya-Torres ◽  
Monika Gupta ◽  
Fabian Heide ◽  
Natalie Krahn ◽  
Scott Legare ◽  
...  

Abstract The production of recombinant proteins for functional and biophysical studies, especially in the field of structural determination, still represents a challenge as high quality and quantities are needed to adequately perform experiments. This is in part solved by optimizing protein constructs and expression conditions to maximize the yields in regular flask expression systems. Still, work flow and effort can be substantial with no guarantee to obtain improvements. This study presents a combination of workflows that can be used to dramatically increase protein production and improve processing results, specifically for the extracellular matrix protein Netrin-1. This proteoglycan is an axon guidance cue which interacts with various receptors to initiate downstream signaling cascades affecting cell differentiation, proliferation, metabolism, and survival. We were able to produce large glycoprotein quantities in mammalian cells, which were engineered for protein overexpression and secretion into the media using the controlled environment provided by a hollow fiber bioreactor. Close monitoring of the internal bioreactor conditions allowed for stable production over an extended period of time. In addition to this, Netrin-1 concentrations were monitored in expression media through biolayer interferometry which allowed us to increase Netrin-1 media concentrations tenfold over our current flask systems while preserving excellent protein quality and in solution behavior. Our particular combination of genetic engineering, cell culture system, protein purification, and biophysical characterization permitted us to establish an efficient and continuous production of high-quality protein suitable for structural biology studies that can be translated to various biological systems. Key points • Hollow fiber bioreactor produces substantial yields of homogenous Netrin-1 • Biolayer interferometry allows target protein quantitation in expression media • High production yields in the bioreactor do not impair Netrin-1 proteoglycan quality Graphical abstract


2002 ◽  
Vol 70 (9) ◽  
pp. 4880-4891 ◽  
Author(s):  
Julia Eitel ◽  
Petra Dersch

ABSTRACT The YadA protein is a major adhesin of Yersinia pseudotuberculosis that promotes tight adhesion to mammalian cells by binding to extracellular matrix proteins. In this study, we first addressed the possibility of competitive interference of YadA and the major invasive factor invasin and found that expression of YadA in the presence of invasin affected neither the export nor the function of invasin in the outer membrane. Furthermore, expression of YadA promoted both bacterial adhesion and high-efficiency invasion entirely independently of invasin. Antibodies against fibronectin and β1 integrins blocked invasion, indicating that invasion occurs via extracellular-matrix-dependent bridging between YadA and the host cell β1 integrin receptors. Inhibitor studies also demonstrated that tyrosine and Ser/Thr kinases, as well as phosphatidylinositol 3-kinase, are involved in the uptake process. Further expression studies revealed that yadA is regulated in response to several environmental parameters, including temperature, ion and nutrient concentrations, and the bacterial growth phase. In complex medium, YadA production was generally repressed but could be induced by addition of Mg2+. Maximal expression of yadA was obtained in exponential-phase cells grown in minimal medium at 37°C, conditions under which the invasin gene is repressed. These results suggest that YadA of Y. pseudotuberculosis constitutes another independent high-level uptake pathway that might complement other cell entry mechanisms (e.g., invasin) at certain sites or stages during the infection process.


Cryobiology ◽  
2008 ◽  
Vol 57 (1) ◽  
pp. 46-51 ◽  
Author(s):  
Yu Hirano ◽  
Yoshiyuki Nishimiya ◽  
Shuichiro Matsumoto ◽  
Michiaki Matsushita ◽  
Satoru Todo ◽  
...  

2002 ◽  
Vol 184 (6) ◽  
pp. 1678-1684 ◽  
Author(s):  
Daniel B. Kearns ◽  
Pamela J. Bonner ◽  
Daniel R. Smith ◽  
Lawrence J. Shimkets

ABSTRACT An extracellular matrix connects bacteria that live in organized assemblages called biofilms. While the role of the matrix in the regulation of cell behavior has not been extensively examined in bacteria, we suggest that, like mammalian cells, the matrix facilitates cell-cell interactions involved with regulation of cohesion, motility, and sensory transduction. The extracellular matrix of the soil bacterium Myxococcus xanthus is essential for biofilm formation and fruiting body development. The matrix material is extruded as long, thin fibrils that mediate adhesion to surfaces, cohesion to other cells, and excitation by the chemoattractant dilauroyl phosphatidylethanolamine. We report the identification of a putative matrix-associated zinc metalloprotease called FibA (fibril protein A). Western blotting with FibA-specific monoclonal antibody 2105 suggests extensive proteolytic processing of FibA during assembly into fibrils, consistent with the autoprocessing observed with other members of the M4 metalloprotease family. Disruption of fibA had no obvious effect on the structure of the fibrils and did not inhibit cell cohesion, excitation by dioleoyl phosphatidylethanolamine, or activity of the A- or S-motility motors. However, the cells lost the ability to respond to dilauroyl phosphatidylethanolamine and to form well-spaced fruiting bodies, though substantial aggregation was observed. Chemotactic excitation of the fibA mutant was restored by incubation with purified wild-type fibrils. The results suggest that this metalloprotease is involved in sensory transduction.


2001 ◽  
Vol 114 (14) ◽  
pp. 2553-2560 ◽  
Author(s):  
Martin Alexander Schwartz ◽  
Richard K. Assoian

Cell cycle progression in mammalian cells is strictly regulated by both integrin-mediated adhesion to the extracellular matrix and by binding of growth factors to their receptors. This regulation is mediated by G1 phase cyclin-dependent kinases (CDKs), which are downstream of signaling pathways under the integrated control of both integrins and growth factor receptors. Recent advances demonstrate a surprisingly diverse array of integrin-dependent signals that are channeled into the regulation of the G1 phase CDKs. Regulation of cyclin D1 by the ERK pathway may provide a paradigm for understanding how cell adhesion can determine cell cycle progression.


1997 ◽  
Vol 325 (1) ◽  
pp. 129-137 ◽  
Author(s):  
Jaime Martins SANTANA ◽  
Philippe GRELLIER ◽  
Joseph SCHRÉVEL ◽  
Antonio R. L. TEIXEIRA

Specific interactions between parasites and extracellular matrix components are an important mechanism in the dissemination of Chagas' disease. Binding of the extracellular matrix proteins to Trypanosoma cruzireceptors has been described as a significant step in this phenomenon. In this study, a specific proteinase activity was identified in cell-free extracts of amastigote, trypomastigote and epimastigote forms of T. cruziusing the collagenase fluorogenic substrate N-Suc-Gly-Pro-Leu-Gly-Pro-7-amido-4-methylcoumarin. Isolation of this activity was achieved by a four-step FPLC procedure. Optimal enzyme activity was found to occur at pH 8.0 and was associated with a single T. cruzi80 kDa protein (Tc 80 proteinase) on SDS/PAGE under reducing conditions. An internal peptide sequence of Tc 80 proteinase was obtained (AGDNYTPPE), and no similarity was found to previously described proteinases of T. cruzi. This enzyme activity is strongly inhibited by HgCl2, tosyl-lysylchloromethane (‘TLCK’) p-chloromercuribenzoate and benzyloxycarbonyl-Phe-Ala-diazomethane. The purified enzyme was able to hydrolyse purified human [14C]collagen types I and IV at neutral pH, but not 14C-labelled BSA, rat laminin, rabbit IgG or small proteins such as insulin or cytochrome c. In addition, Tc 80 proteinase activity was found to be secreted by T. cruziforms infective to mammalian cells. Furthermore we demonstrated that purified Tc 80 proteinase mediates native collagen type I hydrolysis in rat mesentery. This feature is compared with that of Clostridium histolyticum collagenase. These findings suggest that Tc 80 proteinase may facilitate T. cruzihost-cell infection by degrading the collagens of the extracellular matrix and could represent a good target for Chagas' disease chemotherapy.


Author(s):  
Yiming Ma ◽  
Lei Gao ◽  
Yunqing Tian ◽  
Pengguang Chen ◽  
Jing Yang ◽  
...  

2020 ◽  
Vol 18 ◽  
Author(s):  
Andrea Raspa ◽  
Fabrizio Gelain

: Extracellular matrix (ECM) is a meshwork consisting of proteins, proteoglycans, and different soluble molecules. ECM provides structural support to mammalian cells. ECM is responsible for important cell functions, as well as assembling cells into various tissues and organs, regulating growth and cell-cell interaction. Recent studies have shown the potential of nanostructured biomaterials to mimic native ECM. Developing tailor-made biomaterials that mimic the complex nanoscale mesh of local ECM is not a trivial endeavor: bio-inspired biomaterials are designed to supply a healthy ECM-like structure, capable of filling the lesion cavity, favoring transplanted cell engraftment, providing physical support to endogenous neurogenesis and also tuning the inflammatory response to protect spared neurons. The strategies used to manufacture biomimetic hydrogel scaffold represent particularly important prospects of novel therapies for CNS regeneration. During this review, we describe with details the most promising regulatory pathways from ECM involved in the CNS injury and regeneration and we draw a line to the biomimetic potential of engineered nanostructured biomaterials aimed at mimicking extracellular matrix constructs and favoring the release of pro-regenerative agents. Lastly, a brief overview of their application in clinical trials is provided.


Sign in / Sign up

Export Citation Format

Share Document