Competitive annealing mediated isothermal amplification of nucleic acids

The Analyst ◽  
2018 ◽  
Vol 143 (3) ◽  
pp. 639-642 ◽  
Author(s):  
Rui Mao ◽  
Lifei Qi ◽  
Jianjun Li ◽  
Ming Sun ◽  
Zhuo Wang ◽  
...  

A novel nucleic acid isothermal amplification method with high specificity, efficiency and rapidity was developed.

2020 ◽  
Vol 12 (46) ◽  
pp. 5551-5561
Author(s):  
Tianzeng Huang ◽  
Linzhi Li ◽  
Xing Liu ◽  
Qi Chen ◽  
Xueen Fang ◽  
...  

LAMP is a relatively novel gene amplification method under isothermal conditions with rapidity, and high specificity. It is widely applied in the field of food safety, such as in the detection of foodborne pathogens, GM, OP pesticides and so on


2013 ◽  
Vol 59 (2) ◽  
pp. 436-439 ◽  
Author(s):  
Martin Jensen Søe ◽  
Mikkel Rohde ◽  
Jens Mikkelsen ◽  
Peter Warthoe

BACKGROUND Nucleic acid tests that can simultaneously detect multiple targets with high sensitivity, specificity, and speed are highly desirable. To meet this need, we developed a new approach we call the isoPCR method. METHODS The isoPCR method is a 2-stage nested-like nucleic acid amplification method that combines a single multiplex preamplification PCR with subsequent distinct detection of specific targets by use of isothermal amplification. We compared isoPCR to nested quantitative PCR (qPCR), loop-mediated isothermal amplification (LAMP), and nested LAMP (PCR followed by LAMP), for detection of DNA from Candida glabrata. We evaluated the method's multiplex capability for detecting low copy numbers of pathogens commonly involved in sepsis. RESULTS IsoPCR provided detection of 1 copy of Candida glabrata, an LOD that was 5-fold lower than a nested qPCR assay (5 copies), while the amplification time was simultaneously halved. Similarly, the LOD for isoPCR was lower than that for a LAMP assay (1000 copies) and a nested LAMP assay (5 copies). IsoPCR required recognition of 6 regions for detection, thereby providing a theoretically higher specificity compared to nested qPCR (4 regions). The isoPCR multiplexing capability was demonstrated by simultaneous detection of 4 pathogens with individual LODs of 10 copies or fewer. Furthermore, the specificity of isoPCR was demonstrated by successful pathogen detection from samples with more than 1 pathogen present. CONCLUSIONS IsoPCR provides a molecular diagnostic tool for multiplex nucleic acid detection, with an LOD down to 1 copy, high theoretical specificity, and halving of the amplification time compared to a nested qPCR assay.


2017 ◽  
Vol 11 (2) ◽  
pp. 20-27
Author(s):  
Arifa Akram

Disease diagnosis is important for implementation of proper therapeutic and prophylactic measures. Traditionally, disease diagnosis was depends upon isolation and identification of the causative organisms. This was followed by serology and after that molecular method. Molecular tests are valuable when early diagnosis is important. For this purpose, nucleic acid amplification (PCR, nucleic acid sequence-based amplification, self-sustained sequence replication, strand displacement amplification) is one of the most valuable tools not only for the diagnosis of infectious diseases but also used in advanced level research. The Loop-Mediated Isothermal Amplification (LAMP) is a unique nucleic acid amplification technique for diagnosis of various pathogens introduced at 2000 by Notomi and his colleagues which is simple, easy, rapid and cost effective when compared to PCR due to its high specificity, sensitivity, and rapidity. It uses a set of six primers and a DNA polymerase with stranddisplacement activity. Major advantage of LAMP method is its cost-effectiveness as it can be done simply by using waterbath or heating block. Bangladesh J Med Microbiol 2017; 11 (2): 20-27


2018 ◽  
Vol 54 (75) ◽  
pp. 10562-10565 ◽  
Author(s):  
Xin Ye ◽  
Yang Li ◽  
Lijuan Wang ◽  
Xueen Fang ◽  
Jilie Kong

A novel exonuclease-assisted isothermal amplification to amplify and determine nucleic acids very sensitively and with ultrahigh specificity.


2014 ◽  
Vol 395 (6) ◽  
pp. 679-684
Author(s):  
Qu Haitao ◽  
Zhang Wenchao ◽  
Zhang Xiaohui ◽  
Wang Xiujun ◽  
Li Sulong

Abstract Existent nucleic acid isothermal detection techniques for clinical diseases are difficult to promote greatly due to limitations in such aspects as methodology, costs of detection, amplification efficiency and conditions for operation. There is therefore an urgent need for a new isothermal amplification method with the characteristics of high accuracy, easy operation, short time of detection and low costs. We have devised a new method of nucleic acid isothermal amplification using Bst DNA polymerase under isothermal conditions (60–65°C). We call this method of amplification by shortening the distance between forward and reverse primers for nucleic acid isothermal amplification SDAMP. The results demonstrated that this technique is highly sensitive, specific and has short reaction times (40–60 min). Results of sequencing show that the products of SDAMP amplification are mainly polymers formed by series connection of monomers formed through linkage of forward primer and complementary sequences in reverse primer via a few bases. The method is different from current methods of nucleic acid amplification. Our study shows, however, that it is a specific method of nucleic acid isothermal amplification depending on interactions between primers and DNA template.


Lab on a Chip ◽  
2015 ◽  
Vol 15 (7) ◽  
pp. 1697-1707 ◽  
Author(s):  
Mark D. Borysiak ◽  
Kevin W. Kimura ◽  
Jonathan D. Posner

The NAIL device integrates isotachophoresis and loop-mediated isothermal amplification (LAMP) with mobile phone detection to extract, amplify, and detect nucleic acids from complex matrices in less than one hour.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4132
Author(s):  
Jung Ho Kim ◽  
Seokjoon Kim ◽  
Sung Hyun Hwang ◽  
Tae Hwi Yoon ◽  
Jung Soo Park ◽  
...  

The consumption of water and food contaminated by pathogens is a major cause of numerous diseases and deaths globally. To control pathogen contamination and reduce the risk of illness, a system is required that can quickly detect and monitor target pathogens. We developed a simple and reproducible strategy, termed three-way junction (3WJ)-induced transcription amplification, to detect target nucleic acids by rationally combining 3WJ-induced isothermal amplification with a light-up RNA aptamer. In principle, the presence of the target nucleic acid generates a large number of light-up RNA aptamers (Spinach aptamers) through strand displacement and transcription amplification for 2 h at 37 °C. The resulting Spinach RNA aptamers specifically bind to fluorogens such as 3,5-difluoro-4-hydroxybenzylidene imidazolinone and emit a highly enhanced fluorescence signal, which is clearly distinguished from the signal emitted in the absence of the target nucleic acid. With the proposed strategy, concentrations of target nucleic acids selected from the genome of Salmonellaenterica serovar Typhi (S. Typhi) were quantitatively determined with high selectivity. In addition, the practical applicability of the method was demonstrated by performing spike-and-recovery experiments with S. Typhi in human serum.


Nanoscale ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 3633-3638 ◽  
Author(s):  
Hyowon Jang ◽  
Chang Yeol Lee ◽  
Seoyoung Lee ◽  
Ki Soo Park ◽  
Hyun Gyu Park

A new isothermal nucleic acid amplification method termed FERA (Flap endonuclease-initiated Enzymatic Repairing Amplification) is developed for the ultrasensitive detection of target nucleic acids.


2017 ◽  
Vol 19 (suppl_6) ◽  
pp. vi176-vi176 ◽  
Author(s):  
Edward Raack ◽  
Matthew Jennings ◽  
Robert Belton ◽  
Johnathan Lawrence ◽  
Christopher McMahon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document