Effective SERS detection using a flexible wiping substrate based on electrospun polystyrene nanofibers

2017 ◽  
Vol 9 (26) ◽  
pp. 3998-4003 ◽  
Author(s):  
Jalaja K. ◽  
Bhuvaneswari S. ◽  
Manjunatha Ganiga ◽  
Divyamol R. ◽  
Anup S. ◽  
...  

In this paper we demonstrate a flexible SERS substrate that offers effective in situ sampling by wiping directly from the surface of luggage, fruits or any surface of interest.

The Analyst ◽  
2016 ◽  
Vol 141 (20) ◽  
pp. 5864-5869 ◽  
Author(s):  
Ningning Zhou ◽  
Guowen Meng ◽  
Zhulin Huang ◽  
Yan Ke ◽  
Qitao Zhou ◽  
...  

A flexible transparent Ag-NC@PE film substrate is pasted onto contaminated fruits for rapid in situ SERS detection of organic pollutants.


2018 ◽  
Vol 256 ◽  
pp. 107-116 ◽  
Author(s):  
Ping Chen ◽  
Aiwu Zhao ◽  
Jin Wang ◽  
Qinye He ◽  
Henghui Sun ◽  
...  

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Chao Zhang ◽  
Zhaoxiang Li ◽  
Si Qiu ◽  
Weixi Lu ◽  
Mingrui Shao ◽  
...  

Abstract Regulation of hot spots exhibits excellent potential in many applications including nanolasers, energy harvesting, sensing, and subwavelength imaging. Here, hat-shaped hierarchical nanostructures with different space curvatures have been proposed to enhance hot spots for facilitating surface-enhanced Raman scattering (SERS) and plasmon-driven catalysis applications. These novel nanostructures comprise two layers of metal nanoparticles separated by hat-shaped MoS2 films. The fabrication of this hybrid structure is based on the thermal annealing and thermal evaporation of self-assembled polystyrene spheres, which are convenient to control the metal particle size and the curvature of hat-shaped nanostructures. Based on the narrow gaps produced by the MoS2 films and the curvature of space, the constructed platform exhibits superior SERS capability and achieves ultrasensitive detection for toxic molecules. Furthermore, the surface catalytic conversion of p-nitrothiophenol (PNTP) to p, p′-dimercaptobenzene (DMAB) was in situ monitored by the SERS substrate. The mechanism governing this regulation of hot spots is also investigated via theoretical simulations.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Kristina Gudun ◽  
Zarina Elemessova ◽  
Laura Khamkhash ◽  
Ekaterina Ralchenko ◽  
Rostislav Bukasov

We introduce low-cost, tunable, hybrid SERS substrate of commercial gold nanoparticles on untreated aluminum foil (AuNPs@AlF). Two or three AuNP centrifugation/resuspension cycles are proven to be critical in the assay preparation. The limits of detection (LODs) for 4-nitrobenzenethiol (NBT) and crystal violet (CV) on this substrate are about 0.12 nM and 0.19 nM, respectively, while maximum analytical SERS enhancement factors (AEFs) are about 107. In comparative assays LODs for CV measured on AuNPs@Au film and AuNPs@glass are about 0.35 nM and 2 nM, respectively. The LOD for melamine detected on AuNPs@ Al foil is 27 ppb with 3 orders of magnitude for linear response range. Overall, AuNPs@AlF demonstrated competitive performance in comparison with AuNPs@ Au film substrate in SERS detection of CV, NBT, and melamine. To check the versatility of the AuNPs@AlF substrate we also detected KNO3 with LODs of 0.7 mM and SERS EF around 2 × 103, which is on the same order with SERS EF reported for this compound in the literature.


2021 ◽  
pp. 131570
Author(s):  
A. Lorena Picone ◽  
María Luz Rizzato ◽  
Anabela R. Lusi ◽  
Rosana M. Romano

Biosensors ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 91 ◽  
Author(s):  
Natalia E. Markina ◽  
Alexey V. Markin

This report is dedicated to development of surface-enhanced Raman spectroscopy (SERS) based analysis protocol for detection of antibiotics in urine. The key step of the protocol is the pretreatment of urine before the detection to minimize background signal. The pretreatment includes extraction of intrinsic urine components using aluminum hydroxide gel (AHG) and further pH adjusting of the purified sample. The protocol was tested by detection of a single antibiotic in artificially spiked samples of real urine. Five antibiotics of cephalosporin class (cefazolin, cefoperazone, cefotaxime, ceftriaxone, and cefuroxime) were used for testing. SERS measurements were performed using a portable Raman spectrometer with 638 nm excitation wavelength and silver nanoparticles as SERS substrate. The calibration curves of four antibiotics (cefuroxime is the exception) cover the concentrations required for detection in patient’s urine during therapy (25/100‒500 μg/mL). Random error of the analysis (RSD < 20%) and limits of quantification (20‒90 μg/mL) for these antibiotics demonstrate the applicability of the protocol for reliable quantitative detection during therapeutic drug monitoring. The detection of cefuroxime using the protocol is not sensitive enough, allowing only for qualitative detection. Additionally, time stability and batch-to-batch reproducibility of AHG were studied and negative influence of the pretreatment protocol and its limitations were estimated and discussed.


Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 392 ◽  
Author(s):  
Meimei Wu ◽  
Chao Zhang ◽  
Yihan Ji ◽  
Yuan Tian ◽  
Haonan Wei ◽  
...  

This paper introduces a three-dimensional (3D) pyramid to the polymers-plasmonic hybrid structure of polymethyl methacrylate (PMMA) composite silver nanoparticle (AgNPs) as a higher quality flexible surface-enhanced Raman scattering (SERS) substrate. Benefiting from the effective oscillation of light inside the pyramid valley could provide wide distributions of 3D “hot spots” in a large space. The inclined surface design of the pyramid structure could facilitate the aggregation of probe molecules, which achieves highly sensitive detection of rhodamine 6G (R6G) and crystal violet (CV). In addition, the AgNPs and PMMA composite structures provide uniform space distribution for analyte detection in a designated hot spot zone. The incident light can penetrate the external PMMA film to trigger the localized plasmon resonance of the encapsulated AgNPs, achieving enormous enhancement factor (~ 6.24 × 10 8 ). After undergoes mechanical deformation, the flexible SERS substrate still maintains high mechanical stability, which was proved by experiment and theory. For practical applications, the prepared flexible SERS substrate is adapted to the in-situ Raman detection of adenosine aqueous solution and the methylene-blue (MB) molecule detection of the skin of a fish, providing a direct and nondestructive active-platform for the detecting on the surfaces with any arbitrary morphology and aqueous solution.


Nanomaterials ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 384 ◽  
Author(s):  
Zhiliang Zhang ◽  
Tiantian Si ◽  
Jun Liu ◽  
Guowei Zhou

The rapid sampling and efficient collection of target molecules from a real-world surface is fairly crucial for surface-enhanced Raman scattering (SERS) to detect trace pesticide residues in the environment and in agriculture fields. In this work, a versatile approach was exploited to fabricate a flexible SERS substrate for highly sensitive detection of carbaryl pesticides, using in-situ grown silver nanoparticles (AgNPs)on non-woven (NW) fabric surfaces based on mussel-inspired polydopamine (PDA) molecules. The obtained NW@PDA@AgNPs fabrics showed extremely sensitive and reproducible SERS signals toward crystal violet (CV) molecules, and the detection limit was as low as 1.0 × 10−12 M. More importantly, these NW@PDA@AgNPs fabrics could be directly utilized as flexible SERS substrates for the rapid extraction and detection of trace carbaryl pesticides from various fruit surfaces through a simple swabbing approach. It was identified that the detection limits of carbaryl residues from apple, orange, and banana surfaces were approximately decreased to 4.02 × 10−12, 6.04 × 10−12, and 5.03 × 10−12 g, respectively, demonstrating high sensitivity and superior reliability. These flexible substrates could not only drastically increase the collection efficiency from multifarious irregular-shaped matrices, but also greatly enhance analytical sensitivity and reliability for carbaryl pesticides. The fabricated flexible and multifunctional SERS substrates would have great potential to trace pesticide residue detection in the environment and bioscience fields.


Sign in / Sign up

Export Citation Format

Share Document