Specific and spatial labeling of choline-containing teichoic acids in Streptococcus pneumoniae by click chemistry

2017 ◽  
Vol 53 (76) ◽  
pp. 10572-10575 ◽  
Author(s):  
A. M. Di Guilmi ◽  
J. Bonnet ◽  
S. Peiβert ◽  
C. Durmort ◽  
B. Gallet ◽  
...  

A choline metabolic pathway was exploited to label for the first time teichoic acid (TA) in the Streptococcus pneumoniae cell wall.

2007 ◽  
Vol 189 (19) ◽  
pp. 7105-7111 ◽  
Author(s):  
Marlen Damjanovic ◽  
Arun S. Kharat ◽  
Alice Eberhardt ◽  
Alexander Tomasz ◽  
Waldemar Vollmer

ABSTRACT Streptococcus pneumoniae has an absolute nutritional requirement for choline, and the choline molecules are known to incorporate exclusively into the cell wall and membrane teichoic acids of the bacterium. We describe here the isolation of a mutant of strain R6 in which a single G→T point mutation in the gene tacF (formerly designated spr1150) is responsible for generating a choline-independent phenotype. The choline-independent phenotype could be transferred to the laboratory strain R6 and to the encapsulated strain D39 by genetic transformation with a PCR product or with a plasmid carrying the mutated tacF gene. The tacF gene product belongs to the protein family of polysaccharide transmembrane transporters (flippases). A model is presented in which TacF is required for the transport of the teichoic acid subunits across the cytoplasmic membrane. According to this model, wild-type TacF has a strict specificity for choline-containing subunits, whereas the TacF present in the choline-independent mutant strain is able to transport both choline-containing and choline-free teichoic acid chains. The proposed transport specificity of parental-type TacF for choline-containing subunits would ensure the loading of the cell wall with teichoic acid chains decorated with choline residues, which appear to be essential for the virulence of this pathogen.


1998 ◽  
Vol 180 (3) ◽  
pp. 753-758 ◽  
Author(s):  
Wei Liu ◽  
Stephen Eder ◽  
F. Marion Hulett

ABSTRACT The tagAB and tagDEF operons, which are adjacent and divergently transcribed, encode genes responsible for cell wall teichoic acid synthesis in Bacillus subtilis. TheBacillus data presented here suggest that PhoP and PhoR are required for direct repression of transcription of the two operons under phosphate starvation conditions but have no regulatory role under phosphate-replete conditions. These data identify for the first time that PhoP∼P has a negative role in Pho regulon gene regulation.


mBio ◽  
2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Muhammad M. Rahman ◽  
Howard N. Hunter ◽  
Shamina Prova ◽  
Vidhu Verma ◽  
Aneela Qamar ◽  
...  

ABSTRACT The methicillin resistance factor encoded by fmtA is a core member of the Staphylococcus aureus cell wall stimulon, but its function has remained elusive for the past two decades. First identified as a factor that affects methicillin resistance in S. aureus strains, FmtA was later shown to interact with teichoic acids and to localize to the cell division septum. We have made a breakthrough in understanding FmtA function. We show that FmtA hydrolyzes the ester bond between d -Ala and the backbone of teichoic acids, which are polyglycerol-phosphate or polyribitol-phosphate polymers found in the S. aureus cell envelope. FmtA contains two conserved motifs found in serine active-site penicillin-binding proteins (PBPs) and β-lactamases. The conserved SXXK motif was found to be important for the d -amino esterase activity of FmtA. Moreover, we show that deletion of fmtA (Δ fmtA ) led to higher levels of d -Ala in teichoic acids, and this effect was reversed by complementation of Δ fmtA with fmtA . The positive charge on d -Ala partially masks the negative charge of the polyol-phosphate backbone of teichoic acids; hence, a change in the d -Ala content will result in modulation of their charge. Cell division, biofilm formation, autolysis, and colonization are among the many processes in S. aureus affected by the d -Ala content and overall charge of the cell surface teichoic acids. The esterase activity of FmtA and the regulation of fmtA suggest that FmtA functions as a modulator of teichoic acid charge, thus FmtA may be involved in S. aureus cell division, biofilm formation, autolysis, and colonization. IMPORTANCE Teichoic acids are involved in cell division, cell wall synthesis, biofilm formation, attachment of bacteria to artificial surfaces, and colonization. However, the function of teichoic acids is not fully understood. Modification by glycosylation and/or d -alanylation of the polyol-phosphate backbone of teichoic acids is important in the above cell processes. The intrinsic negative charge of teichoic acid backbone plays a role in the charge and/or pH of the bacterial surface, and d -alanylation represents a means through which bacteria modulate the charge or the pH of their surfaces. We discovered that FmtA removes d -Ala from teichoic acids. We propose FmtA may provide a temporal and spatial regulation of the bacterial cell surface charge in two ways, by removing the d -Ala from LTA to make it available to wall teichoic acid (WTA) in response to certain conditions and by removing it from WTA to allow the cell to reset its surface charge to a previous condition.


2022 ◽  
Author(s):  
Josué Flores-Kim ◽  
Genevieve S Dobihal ◽  
Thomas G Bernhardt ◽  
David Z Rudner

Penicillin and related antibiotics disrupt cell wall synthesis in bacteria and induce lysis by misactivating cell wall hydrolases called autolysins. Despite the clinical importance of this phenomenon, little is known about the factors that control autolysins and how penicillins subvert this regulation to kill cells. In the pathogen Streptococcus pneumoniae (Sp), LytA is the major autolysin responsible for penicillin-induced bacteriolysis. We recently discovered that penicillin treatment of Sp causes a dramatic shift in surface polymer biogenesis in which cell wall-anchored teichoic acids (WTAs) increase in abundance at the expense of lipid-linked lipoteichoic acids. Because LytA binds to these polymers, this change recruits the enzyme to its substrate where it cleaves the cell wall and elicits lysis. In this report, we identify WhyD (SPD_0880) as a new factor that controls the level of WTAs in Sp cells to prevent LytA misactivation and lysis. We show that WhyD is a WTA hydrolase that restricts the WTA content of the wall to areas adjacent to active PG synthesis. Our results support a model in which the WTA tailoring activity of WhyD directs PG remodeling activity required for proper cell elongation in addition to preventing autolysis by LytA.


2006 ◽  
Vol 188 (23) ◽  
pp. 8313-8316 ◽  
Author(s):  
Michael A. D'Elia ◽  
Kathryn E. Millar ◽  
Terry J. Beveridge ◽  
Eric D. Brown

ABSTRACT An extensive literature has established that the synthesis of wall teichoic acid in Bacillus subtilis is essential for cell viability. Paradoxically, we have recently shown that wall teichoic acid biogenesis is dispensable in Staphylococcus aureus (M. A. D'Elia, M. P. Pereira, Y. S. Chung, W. Zhao, A. Chau, T. J. Kenney, M. C. Sulavik, T. A. Black, and E. D. Brown, J. Bacteriol. 188:4183-4189, 2006). A complex pattern of teichoic acid gene dispensability was seen in S. aureus where the first gene (tarO) was dispensable and later acting genes showed an indispensable phenotype. Here we show, for the first time, that wall teichoic acid synthesis is also dispensable in B. subtilis and that a similar gene dispensability pattern is seen where later acting enzymes display an essential phenotype, while the gene tagO, whose product catalyzes the first step in the pathway, could be deleted to yield viable mutants devoid of teichoic acid in the cell wall.


2008 ◽  
Vol 190 (14) ◽  
pp. 4989-4996 ◽  
Author(s):  
Catarina Baptista ◽  
Mário A. Santos ◽  
Carlos São-José

ABSTRACT Bacteriophage SPP1 targets the host cell membrane protein YueB to irreversibly adsorb and infect Bacillus subtilis. Interestingly, SPP1 still binds to the surface of yueB mutants, although in a completely reversible way. We evaluated here the relevance of a reversible step in SPP1 adsorption and identified the receptor(s) involved. We show that reversible adsorption is impaired in B. subtilis mutants defective in the glucosylation pathway of teichoic acids or displaying a modified chemical composition of these polymers. The results indicate that glucosylated poly(glycerolphosphate) cell wall teichoic acid is the major target for SPP1 reversible binding. Interaction with this polymer is characterized by a fast adsorption rate showing low-temperature dependence, followed by a rapid establishment of an equilibrium state between adsorbed and free phages. This equilibrium is basically determined by the rate of phage dissociation, which exhibits a strong dependence on temperature compatible with an Arrhenius law. This allowed us to determine an activation energy of 22.6 kcal/mol for phage release. Finally, we show that SPP1 reversible interaction strongly accelerates irreversible binding to YueB. Our results support a model in which fast SPP1 adsorption to and desorption from teichoic acids allows SPP1 to scan the bacterial surface for rapid YueB recognition.


1998 ◽  
Vol 42 (2) ◽  
pp. 277-281 ◽  
Author(s):  
K. Stuertz ◽  
H. Schmidt ◽  
H. Eiffert ◽  
P. Schwartz ◽  
M. Mäder ◽  
...  

ABSTRACT The release of lipoteichoic acid (LTA) and teichoic acid (TA) from a Streptococcus pneumoniae type 3 strain during exposure to ceftriaxone, meropenem, rifampin, rifabutin, quinupristin-dalfopristin, and trovafloxacin in tryptic soy broth was monitored by a newly developed enzyme-linked immunosorbent assay. At a concentration of 10 μg/ml, a rapid and intense release of LTA and TA occurred during exposure to ceftriaxone (3,248 ± 1,688 ng/ml at 3 h and 3,827 ± 2,133 ng/ml at 12 h) and meropenem (2,464 ± 1,081 ng/ml at 3 h and 2,900 ± 1,364 ng/ml at 12 h). Three hours after exposure to rifampin, rifabutin, quinupristin-dalfopristin, and trovafloxacin, mean LTA and TA concentrations of less than 460 ng/ml were observed (for each group,P < 0.01 versus the concentrations after exposure to ceftriaxone). After 12 h of treatment, the LTA and TA concentrations were 463 ± 126 ng/ml after exposure to rifampin, 669 ± 303 ng/ml after exposure to rifabutin, and 1,236 ± 772 ng/ml after exposure to quinupristin-dalfopristin (for each group,P < 0.05 versus the concentrations after exposure to ceftriaxone) and 1,745 ± 1,185 ng/ml after exposure to trovafloxacin (P = 0.12 versus the concentration after exposure to ceftriaxone). At 10 μg/ml, bactericidal antibacterial agents that do not primarily affect cell wall synthesis reduced the amount of LTA and TA released during their cidal action againstS. pneumoniae in comparison with the amount released after exposure to β-lactams. Larger quantities of LTA and TA were released after treatment with low concentrations (1× the MIC and 1× the minimum bactericidal concentration) than after no treatment for all antibacterial agents except the rifamycins. This does not support the concept of using a low first antibiotic dose to prevent the release of proinflammatory cell wall components.


2004 ◽  
Vol 186 (23) ◽  
pp. 7865-7873 ◽  
Author(s):  
Amit P. Bhavsar ◽  
Laura K. Erdman ◽  
Jeffrey W. Schertzer ◽  
Eric D. Brown

ABSTRACT Wall teichoic acids are anionic, phosphate-rich polymers linked to the peptidoglycan of gram-positive bacteria. In Bacillus subtilis, the predominant wall teichoic acid types are poly(glycerol phosphate) in strain 168 and poly(ribitol phosphate) in strain W23, and they are synthesized by the tag and tar gene products, respectively. Growing evidence suggests that wall teichoic acids are essential in B. subtilis; however, it is widely believed that teichoic acids are dispensable under phosphate-limiting conditions. In the work reported here, we carefully studied the dispensability of teichoic acid under phosphate-limiting conditions by constructing three new mutants. These strains, having precise deletions in tagB, tagF, and tarD, were dependent on xylose-inducible complementation from a distal locus (amyE) for growth. The tarD deletion interrupted poly(ribitol phosphate) synthesis in B. subtilis and represents a unique deletion of a tar gene. When teichoic acid biosynthetic proteins were depleted, the mutants showed a coccoid morphology and cell wall thickening. The new wall teichoic acid biogenesis mutants generated in this work and a previously reported tagD mutant were not viable under phosphate-limiting conditions in the absence of complementation. Cell wall analysis of B. subtilis grown under phosphate-limited conditions showed that teichoic acid contributed approximately one-third of the wall anionic content. These data suggest that wall teichoic acid has an essential function in B. subtilis that cannot be replaced by teichuronic acid.


2020 ◽  
Vol 54 (2) ◽  
pp. 313-320
Author(s):  
O. V. Anissimova

Euastrum lacustre is reported for Russia for the first time. This alcaliphilic species was found in the periphyton and plankton of three lakes in the Kursk Region (European Russia). A description of morphology, including the relief of cell wall, and habitats where this taxon is found are represented. LM and SEM microphotographs are provided. Morphological differences of E. lacustre from similar species are discussed. New species for region, namely Closterium aciculare, Cosmarium formosulum, C. granatum, C. pseudoinsigne, C. reniforme and Staurastrum pingue, are found in the samples together with E. lacustre.


Sign in / Sign up

Export Citation Format

Share Document