A multifunctional logic gate by means of a triple-chromophore fluorescent biothiol probe with diverse fluorescence signal patterns

2017 ◽  
Vol 53 (98) ◽  
pp. 13168-13171 ◽  
Author(s):  
Longwei He ◽  
Xueling Yang ◽  
Kaixin Xu ◽  
Yunzhen Yang ◽  
Weiying Lin

Multiple logic gates such as OR, TRANSFER, INH, NOT, and YES operations were achieved on a single triple-chromophore fluorescent probe by using biothiols and fluorescence signal patterns as the multiple inputs and outputs.

2020 ◽  
Vol 4 (3) ◽  
pp. 503
Author(s):  
Mochammad Machlul Alamin ◽  
Hendrawan Armanto ◽  
Indra Maryati

Logic Gate is one of the materials in the subject of Computer Systems at the level of SMK in class X. However, until now the learning media only uses textbooks, power point slides and manual simulations using blackboards. While the material about logic gates is very difficult if it is not directly simulated because it is directly related to the interaction of inputs and outputs at each logic gate. During the use of textbooks and manual simulation media students find it difficult to understand the material about this logic gate. The advantage of learning that utilizes augmented reality is an attractive display and displays 3D logic gate objects and input buttons that can be used to interact directly and the output is also in the form of 3D lamp objects, with this augmented reality technology will be very helpful and useful for simulating the gate logic is directly and easily understood by students. 3D logic gate animations are created using the 3D Blender application and the Augmented Reality process is created using the Unity and Vuforia SDK Library. This logic gate learning application has been applied to two classes, namely the control class and the experimental class. From the results of the Pre Test and Post Test that have been done, the control class has a 22.0% increase in percentage, while the experimental class has a 33.4% increase in percentage. Thus the learning application that utilizes Augmented Reality technology can be applied as a medium for learning logic gates at the vocational level of class X


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhenlong Guo ◽  
YiFei Su ◽  
Kexin Li ◽  
MengYi Tang ◽  
Qiang Li ◽  
...  

AbstractThe development of detecting residual level of abamectin B1 in apples is of great importance to public health. Herein, we synthesized a octopus-like azobenzene fluorescent probe 1,3,5-tris (5′-[(E)-(p-phenoxyazo) diazenyl)] benzene-1,3-dicarboxylic acid) benzene (TPB) for preliminary detection of abamectin B1 in apples. The TPB molecule has been characterized by ultraviolet–visible absorption spectrometry, 1H-nuclear magnetic resonance, fourier-transform infrared (FT-IR), electrospray ionization mass spectroscopy (ESI-MS) and fluorescent spectra. A proper determination condition was optimized, with limit of detection and limit of quantification of 1.3 µg L−1 and 4.4 μg L−1, respectively. The mechanism of this probe to identify abamectin B1 was illustrated in terms of undergoing aromatic nucleophilic substitution, by comparing fluorescence changes, FT-IR and ESI-MS. Furthermore, a facile quantitative detection of the residual abamectin B1 in apples was achieved. Good reproducibility was present based on relative standard deviation of 2.2%. Six carboxyl recognition sites, three azo groups and unique fluorescence signal towards abamectin B1 of this fluorescent probe demonstrated reasonable sensitivity, specificity and selectivity. The results indicate that the octopus-like azobenzene fluorescent probe can be expected to be reliable for evaluating abamectin B1 in agricultural foods.


2014 ◽  
Vol 21 (5) ◽  
pp. 2038-2044 ◽  
Author(s):  
Ippei Takashima ◽  
Ryosuke Kawagoe ◽  
Itaru Hamachi ◽  
Akio Ojida

2021 ◽  
Author(s):  
Bei Li ◽  
Dongsheng Zhao ◽  
Feng Wang ◽  
Xiaoxian Zhang ◽  
Wenqian Li ◽  
...  

This review covers the latest advancements of molecular logic gates based on LMOF. The classification, design strategies, related sensing mechanisms, future developments, and challenges of LMOFs-based logic gates are discussed.


2018 ◽  
Vol 273 ◽  
pp. 681-688 ◽  
Author(s):  
Kuan-Kun Yu ◽  
Wei-Bin Tseng ◽  
Man-Jyun Wu ◽  
A. Santhana Krishna Kumar Alagarsamy ◽  
Wei-Lung Tseng ◽  
...  

2019 ◽  
Vol 28 (10) ◽  
pp. 1950171 ◽  
Author(s):  
Vinay Kumar ◽  
Ankit Singh ◽  
Shubham Upadhyay ◽  
Binod Kumar

Power dissipation has been the prime concern for CMOS circuits. Approximate computing is a potential solution for addressing this concern as it reduces power consumption resulting in improved performance in terms of power–delay product (PDP). Decrease of power consumption in approximate computing is achieved by approximating the demand of accuracy as per the error tolerance of the system. This paper presents a new approach for designing approximate adder by introducing inexactness in the existing logic gate(s). Approximated logic gates provide flexibility in designing low power error-resilient systems depending on the error tolerance of the applications such as image processing and data mining. The proposed approximate adder (PAA) has higher accuracy than existing approximate adders with normalized mean error distance of 0.123 and 0.1256 for 16-bit and 32-bit adder, respectively, and lower PDP of 1.924E[Formula: see text]18[Formula: see text]J for 16-bit adder and 5.808E[Formula: see text]18[Formula: see text]J for 32-bit adder. The PAA also performs better than some of the recent approximate adders reported in literature in terms of layout area and delay. Performance of PAA has also been evaluated with an image processing application.


Author(s):  
Wenxiao Hu ◽  
Yafei Dong ◽  
Luhui Wang ◽  
Yue Wang ◽  
Mengyao Qian ◽  
...  

Background: Molecular logic gate always used fluorescent dyes to realize fluorescence signal. The labeling of the fluorophore is relatively expensive, low yield and singly labeled impuritiesaffects the affinity between the target and the aptamer. Label-free fluorescent aptamer biosensor strategy has attracted widespread interest due to lower cost and simple. Objective: Herein, we have designed a AND logic gate fluorescent aptasensor for detecting carbohydrate antigen 15-3(CA15-3) based on label-free fluorescence signal output. Materials and Methods: A hairpin DNA probe consists of CA15-3 aptamer and partly anti-CA15-3 aptamer sequences as a long stem and G-rich sequences of the middle ring as a quadruplex-forming oligomer. G-rich sequences can fold into a quadruplex by K+, and then G-quadruplex interacts specifically with N-methylmesoporphyrin IX(NMM), leading to a dramatic increase in fluorescence of NMM. With CA15-3 and NMM as the two inputs, the fluorescence intensity of the NMM is the output signal. Lacking of CA15-3 or NMM, there is no significant fluorescence enhancing, and the output of the signal is “0”. The fluorescence signal was dramatically increasing and the output of the signal is “1” only when CA15-3 protein and NMM were added at the same time. Results: This biosensor strategy possessed selectivity, high sensitivity for detecting CA15-3 protein from 10 to 500 U mL-1 and the detection limit was 10 U mL-1, and also showed good reproducibility in spiked human serum. Conclusion: In summary, the proposed AND logic gate fluorescent aptasensor could specifically detect CA15-3.


2016 ◽  
Vol 16 (5&6) ◽  
pp. 465-482
Author(s):  
Taoufik Said ◽  
Abdelhaq Chouikh ◽  
Karima Essammouni ◽  
Mohamed Bennai

We propose an effective way for realizing a three quantum logic gates (NTCP gate, NTCP-NOT gate and NTQ-NOT gate) of one qubit simultaneously controlling N target qubits based on the qubit-qubit interaction. We use the superconducting qubits in a cavity QED driven by a strong microwave field. In our scheme, the operation time of these gates is independent of the number N of qubits involved in the gate operation. These gates are insensitive to the initial state of the cavity QED and can be used to produce an analogous CNOT gate simultaneously acting on N qubits. The quantum phase gate can be realized in a time (nanosecond-scale) much smaller than decoherence time and dephasing time (microsecond-scale) in cavity QED. Numerical simulation under the influence of the gate operations shows that the scheme could be achieved efficiently within current state-of-the-art technology.


Sign in / Sign up

Export Citation Format

Share Document