scholarly journals Insights into exfoliation possibility of MAX phases to MXenes

2018 ◽  
Vol 20 (13) ◽  
pp. 8579-8592 ◽  
Author(s):  
Mohammad Khazaei ◽  
Ahmad Ranjbar ◽  
Keivan Esfarjani ◽  
Dimitri Bogdanovski ◽  
Richard Dronskowski ◽  
...  

Chemical exfoliation of MAX phases into two-dimensional (2D) MXenes can be considered as a major breakthrough in the synthesis of novel 2D systems.

2020 ◽  
Vol 16 ◽  
Author(s):  
Chanchan Fan ◽  
Peng Zhang ◽  
Ranran Wang ◽  
Yezhu Xu ◽  
Xingrui Sun ◽  
...  

: A new kind of two-dimensional (2D) materials MXene (early transition metal carbides, nitrides and carbonitrides) is obtained by selective etching the A element from the MAX phases. MXene exhibits both the metallic conductivity and the hydrophilic nature due to its metal layer structure and hydroxyl or oxygen terminated surfaces. This review provides an overview of the MXene used in the electrolytes and electrodes for the fuel cells and water splitting. MXene with functional groups termination could construct ion channels that significantly benefits to the ion conductivity through the electrolyte. The metal supported by MXene interaction offers electronic, compositional, and geometric effects that could enhance the catalytic activity and stability. MXene have already shown promising performance for fuel cells and water electrolysis. Herein, the etching and intercalation methods of MXene in recent years are summarized. The applications of MXene for fuel cells electrolyte, catalyst and water splitting catalyst are revealed to provide more brief idea for MXene used as new energy materials.


Entropy ◽  
2019 ◽  
Vol 22 (1) ◽  
pp. 11 ◽  
Author(s):  
Edward Bormashenko

Entropy is usually understood as the quantitative measure of “chaos” or “disorder”. However, the notions of “chaos” and “disorder” are definitely obscure. This leads to numerous misinterpretations of entropy. We propose to see the disorder as an absence of symmetry and to identify “ordering” with symmetrizing of a physical system; in other words, introducing the elements of symmetry into an initially disordered physical system. We demonstrate with the binary system of elementary magnets that introducing elements of symmetry necessarily diminishes its entropy. This is true for one-dimensional (1D) and two-dimensional (2D) systems of elementary magnets. Imposing symmetry does not influence the Landauer principle valid for the addressed systems. Imposing the symmetry restrictions onto the system built of particles contained within the chamber divided by the permeable partition also diminishes its entropy.


2017 ◽  
Vol 28 (08) ◽  
pp. 1750099
Author(s):  
F. W. S. Lima

We investigate the critical properties of the equilibrium and nonequilibrium two-dimensional (2D) systems on Solomon networks with both nearest and random neighbors. The equilibrium and nonequilibrium 2D systems studied here by Monte Carlo simulations are the Ising and Majority-vote 2D models, respectively. We calculate the critical points as well as the critical exponent ratios [Formula: see text], [Formula: see text], and [Formula: see text]. We find that numerically both systems present the same exponents on Solomon networks (2D) and are of different universality class than the regular 2D ferromagnetic model. Our results are in agreement with the Grinstein criterion for models with up and down symmetry on regular lattices.


CCS Chemistry ◽  
2019 ◽  
pp. 117-127 ◽  
Author(s):  
Mengqi Zeng ◽  
Yunxu Chen ◽  
Enze Zhang ◽  
Jiaxu Li ◽  
Rafael G. Mendes ◽  
...  

Currently, most two-dimensional (2D) materials that are of interest to emergent applications have focused on van der Waals–layered materials (VLMs) because of the ease with which the layers can be separated (e.g., graphene). Strong interlayer-bonding-layered materials (SLMs) in general have not been thoroughly explored, and one of the most critical present issues is the huge challenge of their preparation, although their physicochemical property transformation should be richer than VLMs and deserves greater attention. MAX phases are a classical kind of SLM. However, limited to the strong interlayer bonding, their corresponding 2D counterparts have never been obtained, nor has there been investigation of their fundamental properties in the 2D limitation. Here, the authors develop a controllable bottom-up synthesis strategy for obtaining 2D SLMs single crystal through the design of a molecular scaffold with Mo 2GaC, which is a typical kind of MAX phase, as an example. The superconducting transitions of Mo 2GaC at the 2D limit are clearly inherited from the bulk, which is consistent with Berezinskii–Kosterlitz–Thouless behavior. The authors believe that their molecular scaffold strategy will allow the fabrication of other high-quality 2D SLMs single crystals, which will further expand the family of 2D materials and promote their future application.


Author(s):  
L Malard ◽  
Lucas Lafetá ◽  
Renan Cunha ◽  
Rafael Nadas ◽  
Andreij Gadelha ◽  
...  

Raman spectroscopy is established as a valuable tool to study and characterize two-dimensional (2D) systems, but it exhibits two drawbacks: a relatively weak signal response and a limited spatial resolution....


2017 ◽  
Vol 5 (10) ◽  
pp. 2488-2503 ◽  
Author(s):  
Mohammad Khazaei ◽  
Ahmad Ranjbar ◽  
Masao Arai ◽  
Taizo Sasaki ◽  
Seiji Yunoki

The recent chemical exfoliation of layered MAX phase compounds to novel two-dimensional transition metal carbides and nitrides, the so-called MXenes, has brought a new opportunity to materials science and technology.


Crystals ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 290 ◽  
Author(s):  
Nadezhda Cherkas ◽  
Sergey Cherkas

Order to disorder transitions are important for two-dimensional (2D) objects such as oxide films with cellular porous structure, honeycomb, graphene, Bénard cells in liquid, and artificial systems consisting of colloid particles on a plane. For instance, solid films of porous alumina represent almost regular crystalline structure. We show that in this case, the radial distribution function is well described by the smeared hexagonal lattice of the two-dimensional ideal crystal by inserting some amount of defects into the lattice.Another example is a system of hard disks in a plane, which illustrates order to disorder transitions. It is shown that the coincidence with the distribution function obtained by the solution of the Percus–Yevick equation is achieved by the smoothing of the square lattice and injecting the defects of the vacancy type into it. However, better approximation is reached when the lattice is a result of a mixture of the smoothed square and hexagonal lattices. Impurity of the hexagonal lattice is considerable at short distances. Dependencies of the lattice constants, smoothing widths, and contributions of the different type of the lattices on the filling parameter are found. The transition to order looks to be an increase of the hexagonal lattice fraction in the superposition of hexagonal and square lattices and a decrease of their smearing.


RSC Advances ◽  
2015 ◽  
Vol 5 (32) ◽  
pp. 25403-25408 ◽  
Author(s):  
Zhonglu Guo ◽  
Linggang Zhu ◽  
Jian Zhou ◽  
Zhimei Sun

Two-dimensional transition metal carbides/nitrides Mn+1Xns labeled as MXenes derived from MAX phases attract increasing interest due to their promising applications as Li-ion battery anodes, hybrid electro-chemical capacitors and electronic devices.


2017 ◽  
Vol 99 ◽  
pp. 25-32 ◽  
Author(s):  
Amir Baniamerian ◽  
Nader Meskin ◽  
Khashayar Khorasani

Sign in / Sign up

Export Citation Format

Share Document