Studying 2D Materials with Advanced Raman Spectroscopy: CARS, SRS and TERS

Author(s):  
L Malard ◽  
Lucas Lafetá ◽  
Renan Cunha ◽  
Rafael Nadas ◽  
Andreij Gadelha ◽  
...  

Raman spectroscopy is established as a valuable tool to study and characterize two-dimensional (2D) systems, but it exhibits two drawbacks: a relatively weak signal response and a limited spatial resolution....

2020 ◽  
Vol 13 (05) ◽  
pp. 2030010 ◽  
Author(s):  
Pengkun Yin ◽  
Qingyu Lin ◽  
Yixiang Duan

At present, two-dimensional (2D) materials have shown great application potential in numerous fields based on their physical chemical and electronic properties. Raman spectroscopy and derivative techniques are effective tools for characterizing 2D materials. Raman spectroscopy conveys lots of knowledge on 2D materials, including layer number, doping type, strain and interlayer coupling. This review summarized advanced applications of Raman spectroscopy in 2D materials. The challenges and possible applied directions of Raman spectroscopy to 2D materials are discussed in detail.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Ming Xia

Two-dimensional (2D) materials, such as graphene and MoS2, have been attracting wide interest in surface enhancement Raman spectroscopy. This perspective gives an overview of recent developments in 2D materials’ application in surface-enhanced Raman spectroscopy. This review paper focuses on the applications of using bare 2D materials and metal/2D material hybrid substrate for Raman enhancement. The Raman enhancing mechanism of 2D materials will also be discussed. The progress covered herein shows great promise for widespread adoption of 2D materials in SERS application.


Molecules ◽  
2018 ◽  
Vol 24 (1) ◽  
pp. 88 ◽  
Author(s):  
Zuoyuan Dong ◽  
Hejun Xu ◽  
Fang Liang ◽  
Chen Luo ◽  
Chaolun Wang ◽  
...  

The emergence and development of two-dimensional (2D) materials has provided a new direction for enhancing the thermoelectric (TE) performance due to their unique structural, physical and chemical properties. However, the TE performance measurement of 2D materials is a long-standing challenge owing to the experimental difficulties of precise control in samples and high demand in apparatus. Until now, there is no universal methodology for measuring the dimensionless TE figure of merit (ZT) (the core parameter for evaluating TE performance) of 2D materials systematically in experiments. Raman spectroscopy, with its rapid and nondestructive properties for probing samples, is undoubtedly a powerful tool for characterizing 2D materials as it is known as a spectroscopic ‘Swiss-Army Knife’. Raman spectroscopy can be employed to measure the thermal conductivity of 2D materials and expected to be a systematic method in evaluating TE performance, boosting the development of thermoelectricity. In this review, thermoelectricity, 2D materials, and Raman techniques, as well as thermal conductivity measurements of 2D materials by Raman spectroscopy are introduced. The prospects of obtaining ZT and testing the TE performance of 2D materials by Raman spectroscopy in the future are also discussed.


2017 ◽  
Author(s):  
Varun Bheemireddy

The two-dimensional(2D) materials are highly promising candidates to realise elegant and e cient transistor. In the present letter, we conjecture a novel co-planar metal-insulator-semiconductor(MIS) device(capacitor) completely based on lateral 2D materials architecture and perform numerical study of the capacitor with a particular emphasis on its di erences with the conventional 3D MIS electrostatics. The space-charge density features a long charge-tail extending into the bulk of the semiconductor as opposed to the rapid decay in 3D capacitor. Equivalently, total space-charge and semiconductor capacitance densities are atleast an order of magnitude more in 2D semiconductor. In contrast to the bulk capacitor, expansion of maximum depletion width in 2D semiconductor is observed with increasing doping concentration due to lower electrostatic screening. The heuristic approach of performance analysis(2D vs 3D) for digital-logic transistor suggest higher ON-OFF current ratio in the long-channel limit even without third dimension and considerable room to maximise the performance of short-channel transistor. The present results could potentially trigger the exploration of new family of co-planar at transistors that could play a signi significant role in the future low-power and/or high performance electronics.<br>


Author(s):  
Jay Anderson ◽  
Mustafa Kansiz ◽  
Michael Lo ◽  
Curtis Marcott

Abstract Failure analysis of organics at the microscopic scale is an increasingly important requirement, with traditional analytical tools such as FTIR and Raman microscopy, having significant limitations in either spatial resolution or data quality. We introduce here a new method of obtaining Infrared microspectroscopic information, at the submicron level in reflection (far-field) mode, called Optical-Photothermal Infrared (O-PTIR) spectroscopy, that can also generate simultaneous Raman spectra, from the same spot, at the same time and with the same spatial resolution. This novel combination of these two correlative techniques can be considered to be complimentary and confirmatory, in which the IR confirms the Raman result and vice-versa, to yield more accurate and therefore more confident organic unknowns analysis.


2021 ◽  
Vol 16 ◽  
Author(s):  
Joice Sophia Ponraj ◽  
Muniraj Vignesh Narayanan ◽  
Ranjith Kumar Dharman ◽  
Valanarasu Santiyagu ◽  
Ramalingam Gopal ◽  
...  

: Increasing energy crisis across the globe requires immediate solutions. Two-dimensional (2D) materials are in great significance because of its application in energy storage and conversion devices but the production process significantly impacts the environment thereby posing a severe problem in the field of pollution control. Green synthesis method provides an eminent way of reduction in pollutants. This article reviews the importance of green synthesis in the energy application sector. The focus of 2D materials like graphene, MoS2, VS2 in energy storage and conversion devices are emphasized based on supporting recent reports. The emerging Li-ion batteries are widely reviewed along with their promising alternatives like Zn, Na, Mg batteries and are featured in detail. The impact of green methods in the energy application field are outlined. Moreover, future outlook in the energy sector is envisioned by proposing an increase in 2D elemental materials research.


Author(s):  
Xiaoqiu Guo ◽  
Ruixin Yu ◽  
Jingwen Jiang ◽  
Zhuang Ma ◽  
Xiuwen Zhang

Topological insulation is widely predicted in two-dimensional (2D) materials realized by epitaxial growth or van der Waals (vdW) exfoliation. Such 2D topological insulators (TI’s) host many interesting physical properties such...


Author(s):  
Sai Manoj Gali ◽  
David Beljonne

Transition Metal Dichalcogenides (TMDCs) are emerging as promising two-dimensional (2D) materials. Yet, TMDCs are prone to inherent defects such as chalcogen vacancies, which are detrimental to charge transport. Passivation of...


Author(s):  
Chunli Liu ◽  
Yang Bai ◽  
Ji Wang ◽  
Ziming Qiu ◽  
Huan Pang

Two-dimensional (2D) materials with structures having diverse features are promising for application in energy conversion and storage. A stronger layered orientation can guarantee fast charge transfer along the 2D planes...


Nanophotonics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 2315-2340 ◽  
Author(s):  
Junli Wang ◽  
Xiaoli Wang ◽  
Jingjing Lei ◽  
Mengyuan Ma ◽  
Cong Wang ◽  
...  

AbstractDue to the unique properties of two-dimensional (2D) materials, much attention has been paid to the exploration and application of 2D materials. In this review, we focus on the application of 2D materials in mode-locked fiber lasers. We summarize the synthesis methods for 2D materials, fiber integration with 2D materials and 2D materials based saturable absorbers. We discuss the performance of the diverse mode-locked fiber lasers in the typical operating wavelength such as 1, 1.5, 2 and 3 μm. Finally, a summary and outlook of the further applications of the new materials in mode-locked fiber lasers are presented.


Sign in / Sign up

Export Citation Format

Share Document