A high-performance SERS-imprinted sensor doped with silver particles of different surface morphologies for selective detection of pyrethroids in rivers

2017 ◽  
Vol 41 (23) ◽  
pp. 14342-14350 ◽  
Author(s):  
Hongji Li ◽  
Xiaonan Wang ◽  
Zirun Wang ◽  
Jiaqi Jiang ◽  
Yu Qiao ◽  
...  

Ag-MIPs were prepared through a multistep procedure, in which MPS and LC were selected as the template molecules. These materials could selectively rebind the templates and could be detected using Raman spectroscopy.

Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 235
Author(s):  
Shuqi Zhao ◽  
Tongtong Yu ◽  
Ziming Wang ◽  
Shilei Wang ◽  
Limei Wei ◽  
...  

Two-dimensional (2D) materials driven by their unique electronic and optoelectronic properties have opened up possibilities for their various applications. The large and high-quality single crystals are essential to fabricate high-performance 2D devices for practical applications. Herein, IV-V 2D GeP single crystals with high-quality and large size of 20 × 15 × 5 mm3 were successfully grown by the Bi flux growth method. The crystalline quality of GeP was confirmed by high-resolution X-ray diffraction (HRXRD), Laue diffraction, electron probe microanalysis (EPMA) and Raman spectroscopy. Additionally, intrinsic anisotropic optical properties were investigated by angle-resolved polarized Raman spectroscopy (ARPRS) and transmission spectra in detail. Furthermore, we fabricated high-performance photodetectors based on GeP, presenting a relatively large photocurrent over 3 mA. More generally, our results will significantly contribute the GeP crystal to the wide optoelectronic applications.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1246
Author(s):  
Steffen Ulitzsch ◽  
Tim Bäuerle ◽  
Mona Stefanakis ◽  
Marc Brecht ◽  
Thomas Chassé ◽  
...  

We present the modification of ethylene-propylene rubber (EPM) with vinyltetra-methydisiloxane (VTMDS) via reactive extrusion to create a new silicone-based material with the potential for high-performance applications in the automotive, industrial and biomedical sectors. The radical-initiated modification is achieved with a peroxide catalyst starting the grafting reaction. The preparation process of the VTMDS-grafted EPM was systematically investigated using process analytical technology (in-line Raman spectroscopy) and the statistical design of experiments (DoE). By applying an orthogonal factorial array based on a face-centered central composite experimental design, the identification, quantification and mathematical modeling of the effects of the process factors on the grafting result were undertaken. Based on response surface models, process windows were defined that yield high grafting degrees and good grafting efficiency in terms of grafting agent utilization. To control the grafting process in terms of grafting degree and grafting efficiency, the chemical changes taking place during the modification procedure in the extruder were observed in real-time using a spectroscopic in-line Raman probe which was directly inserted into the extruder. Successful grafting of the EPM was validated in the final product by 1H-NMR and FTIR spectroscopy.


2019 ◽  
Vol 283 ◽  
pp. 278-283 ◽  
Author(s):  
Ying Liu ◽  
Yiping Wu ◽  
Xiaoyu Guo ◽  
Ying Wen ◽  
Haifeng Yang

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Bishwajeet Singh Bhardwaj ◽  
Takeshi Sugiyama ◽  
Naoko Namba ◽  
Takayuki Umakoshi ◽  
Takafumi Uemura ◽  
...  

Abstract Pentacene, an organic molecule, is a promising material for high-performance field effect transistors due to its high charge carrier mobility in comparison to usual semiconductors. However, the charge carrier mobility is strongly dependent on the molecular orientation of pentacene in the active layer of the device, which is hard to investigate using standard techniques in a real device. Raman scattering, on the other hand, is a high-resolution technique that is sensitive to the molecular orientation. In this work, we investigated the orientation distribution of pentacene molecules in actual transistor devices by polarization-dependent Raman spectroscopy and correlated these results with the performance of the device. This study can be utilized to understand the distribution of molecular orientation of pentacene in various electronic devices and thus would help in further improving their performances.


2019 ◽  
Vol 5 (1) ◽  
pp. 469-471
Author(s):  
Thomas Reske ◽  
Katharina Wulf ◽  
Thomas Eickner ◽  
Niels Grabow ◽  
Klaus-Peter Schmitz ◽  
...  

AbstractThe analysis of device drug content typically is carried out by means of chromatographic methods such as high performance liquid chromatography (HPLC) or liquid chromatography-mass spectrometry (LCMS). These approved methods are particularly fast, cost-efficient and ubiquitous in chemical-analytical laboratories. However, these quantitative methods necessitate the drug being eluted, which represents a destructive process. A novel alternative to these well-established methods [1, 2] is the Raman spectroscopy, which is fast and cost-efficient, as well [3]. Additionally, it offers the advantage of nondestructive analysis without the need for a special sample preparation. Within the current investigation we applied Raman spectroscopy for the qualitative and quantitative analysis of dexamethasone (DMS), a glucocorticoid, incorporated in a silicone matrix. The investigation was conducted in a rectangular area on the sample surface. The required number of measuring points (spectra) was determined. Calibration was performed with samples containing different amounts of DMS. The evaluation of Raman spectra is based on the analysis of the peak areas of the bands at 795 rel. cm-1(silicone) and 1,663 rel. cm-1(DMS). Remarkably, next to a precise overview of DMS distribution, an exact and reproducible quantification of incorporated DMS could be obtained.


2020 ◽  
Vol 44 (7) ◽  
pp. 3078-3086
Author(s):  
Shiyu Li ◽  
Zhongying Zhang ◽  
Jingdong Peng ◽  
Xiang Wang ◽  
Dengying Long ◽  
...  

For the first time, a highly sensitive and selective detection technology of high-performance liquid chromatography associated with resonance Rayleigh scattering spectra (HPLC-RRS) is applied to analyze migraine drugs including zolmitriptan (ZON) and rizatriptan (RIN).


Sign in / Sign up

Export Citation Format

Share Document