CO oxidation activity of Pt, Zn and ZnPt nanocatalysts: a comparative study by in situ near-ambient pressure X-ray photoelectron spectroscopy

Nanoscale ◽  
2018 ◽  
Vol 10 (14) ◽  
pp. 6566-6580 ◽  
Author(s):  
Ahmed Naitabdi ◽  
Anthony Boucly ◽  
François Rochet ◽  
Robert Fagiewicz ◽  
Giorgia Olivieri ◽  
...  

NAP-XPS allows the monitoring of chemical reactions on nanocatalysts.

Catalysts ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 256 ◽  
Author(s):  
Feng Zhao ◽  
Shuangde Li ◽  
Xiaofeng Wu ◽  
Renliang Yue ◽  
Weiman Li ◽  
...  

CuO-CeO2 nanocatalysts with varying CuO contents (1, 5, 9, 14 and 17 wt %) were prepared by one-step flame spray pyrolysis (FSP) and applied to CO oxidation. The influences of CuO content on the as-prepared catalysts were systematically characterized by X-ray diffraction (XRD), N2 adsorption-desorption at −196 °C, field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and hydrogen-temperature programmed reduction (H2-TPR). A superior CO oxidation activity was observed for the 14 wt % CuO-CeO2 catalyst, with 90% CO conversion at 98 °C at space velocity (60,000 mL × g−1 × h−1), which was attributed to abundant surface defects (lattice distortion, Ce3+, and oxygen vacancies) and high reducibility supported by strong synergistic interaction. In addition, the catalyst also displayed excellent stability and resistance to water vapor. Significantly, in situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS) showed that in the CO catalytic oxidation process, the strong synergistic interaction led readily to dehydroxylation and CO adsorption on Cu+ at low temperature. Furthermore, in the feed of water vapor, although there was an adverse effect on the access of CO adsorption, there was also a positive effect on the formation of fewer carbon intermediates. All these results showed the potential of highly active and water vapor-resistive CuO-CeO2 catalysts prepared by FSP.


2008 ◽  
Vol 47 (46) ◽  
pp. 8893-8896 ◽  
Author(s):  
Michael E. Grass ◽  
Yawen Zhang ◽  
Derek R. Butcher ◽  
Jeong Y. Park ◽  
Yimin Li ◽  
...  

2008 ◽  
Vol 120 (46) ◽  
pp. 9025-9028 ◽  
Author(s):  
Michael E. Grass ◽  
Yawen Zhang ◽  
Derek R. Butcher ◽  
Jeong Y. Park ◽  
Yimin Li ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Marc Benjamin Hahn ◽  
Paul M. Dietrich ◽  
Jörg Radnik

AbstractIonizing radiation damage to DNA plays a fundamental role in cancer therapy. X-ray photoelectron-spectroscopy (XPS) allows simultaneous irradiation and damage monitoring. Although water radiolysis is essential for radiation damage, all previous XPS studies were performed in vacuum. Here we present near-ambient-pressure XPS experiments to directly measure DNA damage under water atmosphere. They permit in-situ monitoring of the effects of radicals on fully hydrated double-stranded DNA. The results allow us to distinguish direct damage, by photons and secondary low-energy electrons (LEE), from damage by hydroxyl radicals or hydration induced modifications of damage pathways. The exposure of dry DNA to x-rays leads to strand-breaks at the sugar-phosphate backbone, while deoxyribose and nucleobases are less affected. In contrast, a strong increase of DNA damage is observed in water, where OH-radicals are produced. In consequence, base damage and base release become predominant, even though the number of strand-breaks increases further.


2017 ◽  
Vol 53 (37) ◽  
pp. 5231-5234 ◽  
Author(s):  
Jack Chun-Ren Ke ◽  
Alex S. Walton ◽  
David J. Lewis ◽  
Aleksander Tedstone ◽  
Paul O'Brien ◽  
...  

Near-ambient-pressure X-ray photoelectron spectroscopy enables the study of the reaction of in situ-prepared methylammonium lead iodide (MAPI) perovskite at realistic water vapour pressures for the first time.


2015 ◽  
Vol 174 ◽  
pp. 532-541 ◽  
Author(s):  
Benedetto Bozzini ◽  
Matteo Amati ◽  
Patrizia Bocchetta ◽  
Simone Dal Zilio ◽  
Axel Knop-Gericke ◽  
...  

Catalysts ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1000
Author(s):  
Norbert Köpfle ◽  
Kevin Ploner ◽  
Peter Lackner ◽  
Thomas Götsch ◽  
Christoph Thurner ◽  
...  

Starting from subsurface Zr0-doped “inverse” Pd and bulk-intermetallic Pd0Zr0 model catalyst precursors, we investigated the dry reforming reaction of methane (DRM) using synchrotron-based near ambient pressure in-situ X-ray photoelectron spectroscopy (NAP-XPS), in-situ X-ray diffraction and catalytic testing in an ultrahigh-vacuum-compatible recirculating batch reactor cell. Both intermetallic precursors develop a Pd0–ZrO2 phase boundary under realistic DRM conditions, whereby the oxidative segregation of ZrO2 from bulk intermetallic PdxZry leads to a highly active composite layer of carbide-modified Pd0 metal nanoparticles in contact with tetragonal ZrO2. This active state exhibits reaction rates exceeding those of a conventional supported Pd–ZrO2 reference catalyst and its high activity is unambiguously linked to the fast conversion of the highly reactive carbidic/dissolved C-species inside Pd0 toward CO at the Pd/ZrO2 phase boundary, which serves the role of providing efficient CO2 activation sites. In contrast, the near-surface intermetallic precursor decomposes toward ZrO2 islands at the surface of a quasi-infinite Pd0 metal bulk. Strongly delayed Pd carbide accumulation and thus carbon resegregation under reaction conditions leads to a much less active interfacial ZrO2–Pd0 state.


2D Materials ◽  
2020 ◽  
Vol 7 (2) ◽  
pp. 025014
Author(s):  
Dooyong Lee ◽  
Jae Hyuck Jang ◽  
Wooseok Song ◽  
Joonhee Moon ◽  
Yooseok Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document