scholarly journals Smart nanoporous metal–organic frameworks by embedding photochromic molecules – state of the art and future perspectives

2018 ◽  
Vol 17 (7) ◽  
pp. 864-873 ◽  
Author(s):  
H. A. Schwartz ◽  
U. Ruschewitz ◽  
L. Heinke

The opportunities, properties and perspectives of smart photochromic materials, which are obtained by embedment of stimuli-responsive molecules in nanoporous MOFs (metal–organic frameworks), both in bulk and in thin films, are reviewed.

2009 ◽  
Vol 21 (19) ◽  
pp. 1931-1935 ◽  
Author(s):  
Patricia Horcajada ◽  
Christian Serre ◽  
David Grosso ◽  
Cedric Boissière ◽  
Sandrine Perruchas ◽  
...  

2020 ◽  
Author(s):  
Pia Vervoorts ◽  
Stefan Burger ◽  
Karina Hemmer ◽  
Gregor Kieslich

The zeolitic imidazolate frameworks ZIF-8 and ZIF-67 harbour a series of fascinating stimuli responsive properties. Looking at their responsitivity to hydrostatic pressure as stimulus, open questions exist regarding the isotropic compression with non-penetrating pressure transmitting media. By applying a state-of-the-art high-pressure powder X-ray diffraction setup, we revisit the high-pressure behaviour of ZIF-8 and ZIF-67 up to <i>p</i> = 0.4 GPa in small pressure increments. We observe a drastic, reversible change of high-pressure powder X-ray diffraction data at <i>p</i> = 0.3 GPa, discovering large volume structural flexibility in ZIF-8 and ZIF-67. Our results imply a shallow underlying energy landscape in ZIF-8 and ZIF-67, an observation that might point at rich polymorphism of ZIF-8 and ZIF-67, similar to ZIF-4(Zn).<br>


2020 ◽  
Author(s):  
Pia Vervoorts ◽  
Stefan Burger ◽  
Karina Hemmer ◽  
Gregor Kieslich

The zeolitic imidazolate frameworks ZIF-8 and ZIF-67 harbour a series of fascinating stimuli responsive properties. Looking at their responsitivity to hydrostatic pressure as stimulus, open questions exist regarding the isotropic compression with non-penetrating pressure transmitting media. By applying a state-of-the-art high-pressure powder X-ray diffraction setup, we revisit the high-pressure behaviour of ZIF-8 and ZIF-67 up to <i>p</i> = 0.4 GPa in small pressure increments. We observe a drastic, reversible change of high-pressure powder X-ray diffraction data at <i>p</i> = 0.3 GPa, discovering large volume structural flexibility in ZIF-8 and ZIF-67. Our results imply a shallow underlying energy landscape in ZIF-8 and ZIF-67, an observation that might point at rich polymorphism of ZIF-8 and ZIF-67, similar to ZIF-4(Zn).<br>


Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1552 ◽  
Author(s):  
Weber ◽  
Graniel ◽  
Balme ◽  
Miele ◽  
Bechelany

Improving the selectivity of gas sensors is crucial for their further development. One effective route to enhance this key property of sensors is the use of selective nanomembrane materials. This work aims to present how metal-organic frameworks (MOFs) and thin films prepared by atomic layer deposition (ALD) can be applied as nanomembranes to separate different gases, and hence improve the selectivity of gas sensing devices. First, the fundamentals of the mechanisms and configuration of gas sensors will be given. A selected list of studies will then be presented to illustrate how MOFs and ALD materials can be implemented as nanomembranes and how they can be implemented to improve the operational performance of gas sensing devices. This review comprehensively shows the benefits of these novel selective nanomaterials and opens prospects for the sensing community.


Author(s):  
Francisco Colmenero

Cobalt squarate hydroxide (Co3(C4O4)2(OH)2), zinc squarate tetrahydrate (ZnC4O4·4 H2O) and titanium oxalate trioxide dihydrate (Ti2(C2O4)O3·2 H2O) are nanoporous metal-organic frameworks possessing empty channels in their crystal structures. The crystal structures...


Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 137
Author(s):  
Chun-Yan Shih ◽  
Pei-Ting Wang ◽  
Wu-Chou Su ◽  
Hsisheng Teng ◽  
Wei-Lun Huang

Since the first clinical cancer treatment in 1978, photodynamic therapy (PDT) technologies have been largely improved and approved for clinical usage in various cancers. Due to the oxygen-dependent nature, the application of PDT is still limited by hypoxia in tumor tissues. Thus, the development of effective strategies for manipulating hypoxia and improving the effectiveness of PDT is one of the most important area in PDT field. Recently, emerging nanotechnology has benefitted progress in many areas, including PDT. In this review, after briefly introducing the mechanisms of PDT and hypoxia, as well as basic knowledge about nanomedicines, we will discuss the state of the art of nanomedicine-based approaches for assisting PDT for treating hypoxic tumors, mainly based on oxygen replenishing strategies and the oxygen dependency diminishing strategies. Among these strategies, we will emphasize emerging trends about the use of nanoscale metal–organic framework (nMOF) materials and the combination of PDT with immunotherapy. We further discuss future perspectives and challenges associated with these trends in both the aspects of mechanism and clinical translation.


Sign in / Sign up

Export Citation Format

Share Document