scholarly journals On the Use of MOFs and ALD Layers as Nanomembranes for the Enhancement of Gas Sensors Selectivity

Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1552 ◽  
Author(s):  
Weber ◽  
Graniel ◽  
Balme ◽  
Miele ◽  
Bechelany

Improving the selectivity of gas sensors is crucial for their further development. One effective route to enhance this key property of sensors is the use of selective nanomembrane materials. This work aims to present how metal-organic frameworks (MOFs) and thin films prepared by atomic layer deposition (ALD) can be applied as nanomembranes to separate different gases, and hence improve the selectivity of gas sensing devices. First, the fundamentals of the mechanisms and configuration of gas sensors will be given. A selected list of studies will then be presented to illustrate how MOFs and ALD materials can be implemented as nanomembranes and how they can be implemented to improve the operational performance of gas sensing devices. This review comprehensively shows the benefits of these novel selective nanomaterials and opens prospects for the sensing community.

2020 ◽  
Vol 92 (2) ◽  
pp. 213-222 ◽  
Author(s):  
Matthieu Weber ◽  
Mikhael Bechelany

AbstractSupported metallic nanoparticles (NPs) are essential for many important chemical processes. In order to implement precisely tuned NPs in miniaturized devices by compatible processes, novel nanoengineering routes must be explored. Atomic layer deposition (ALD), a scalable vapor phase technology typically used for the deposition of thin films, represents a promising new route for the synthesis of supported metallic NPs. Metal–organic frameworks (MOFs) are a new exciting class of crystalline porous materials that have attracted much attention in the recent years. Since the size of their pores can be precisely adjusted, these nanomaterials permit highly selective separation and catalytic processes. The combination of NPs and MOF is an emerging area opening numbers of applications, which still faces considerable challenges, and new routes need to be explored for the synthesis of these NPs/MOF nanocomposites. The aim of this paper is double: first, it aims to briefly present the ALD route and its use for the synthesis of metallic NPs. Second, the combination of ALD-grown NPs and MOFs has been explored for the synthesis of Pd NPs/MOF ZIF-8, and several selected examples were ALD-grown NPs and MOFs have been combined and applied gas separation and catalysis will be presented.


2020 ◽  
Vol 8 (5) ◽  
pp. 2539-2548 ◽  
Author(s):  
Kristian Blindheim Lausund ◽  
Malin Solheim Olsen ◽  
Per-Anders Hansen ◽  
Håkon Valen ◽  
Ola Nilsen

Thin films of metal–organic frameworks (MOFs) are promising for a wide range of applications including membranes for separations and sensor materials in microelectronics.


Sensors ◽  
2019 ◽  
Vol 19 (15) ◽  
pp. 3323 ◽  
Author(s):  
Jae-Hyoung Lee ◽  
Thanh-Binh Nguyen ◽  
Duy-Khoi Nguyen ◽  
Jae-Hun Kim ◽  
Jin-Young Kim ◽  
...  

The gas sensing properties of two novel series of Mg-incorporated metal–organic frameworks (MOFs), termed Mg-MOFs-I and -II, were assessed. The synthesized iso-reticular type Mg-MOFs exhibited good crystallinity, high thermal stability, needle-shape morphology and high surface area (up to 2900 m2·g−1), which are promising for gas sensing applications. Gas-sensing studies of gas sensors fabricated from Mg-MOFs-II revealed better sensing performance, in terms of the sensor dynamics and sensor response, at an optimal operating temperature of 200 °C. The MOF gas sensor with a larger pore size and volume showed shorter response and recovery times, demonstrating the importance of the pore size and volume on the kinetic properties of MOF-based gas sensors. The gas-sensing results obtained in this study highlight the potential of Mg-MOFs gas sensors for the practical monitoring of toxic gases in a range of environments.


2012 ◽  
Vol 26 (2) ◽  
pp. 025008 ◽  
Author(s):  
Mario Ziegler ◽  
Ludwig Fritzsch ◽  
Julia Day ◽  
Sven Linzen ◽  
Solveig Anders ◽  
...  

2003 ◽  
Vol 93 (1-3) ◽  
pp. 552-555 ◽  
Author(s):  
A. Rosental ◽  
A. Tarre ◽  
A. Gerst ◽  
J. Sundqvist ◽  
A. Hårsta ◽  
...  

2015 ◽  
Vol 7 (51) ◽  
pp. 28223-28230 ◽  
Author(s):  
Chung-Wei Kung ◽  
Joseph E. Mondloch ◽  
Timothy C. Wang ◽  
Wojciech Bury ◽  
William Hoffeditz ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 82
Author(s):  
Taivo Jõgiaas ◽  
Aivar Tarre ◽  
Hugo Mändar ◽  
Jekaterina Kozlova ◽  
Aile Tamm

Chromium (III) oxide is a technologically interesting material with attractive chemical, catalytic, magnetic and mechanical properties. It can be produced by different chemical and physical methods, for instance, by metal–organic chemical vapor deposition, thermal decomposition of chromium nitrate Cr(NO3)3 or ammonium dichromate (NH4)2Cr2O7, magnetron sputtering and atomic layer deposition. The latter method was used in the current work to deposit Cr2O3 thin films with thicknesses from 28 to 400 nm at deposition temperatures from 330 to 465 °C. The phase composition, crystallite size, hardness and modulus of elasticity were measured. The deposited Cr2O3 thin films had different structures from X-ray amorphous to crystalline α-Cr2O3 (eskolaite) structures. The averaged hardness of the films on SiO2 glass substrate varied from 12 to 22 GPa and the moduli were in the range of 76–180 GPa, as determined by nanoindentation. Lower values included some influence from a softer deposition substrate. The results indicate that Cr2O3 could be a promising material as a mechanically protective thin film applicable, for instance, in micro-electromechanical devices.


Sign in / Sign up

Export Citation Format

Share Document