scholarly journals Narrowing the band gap to enhance the resistive switching properties of Pr3+-doped ZnO thin films by Cd-ion doping

RSC Advances ◽  
2017 ◽  
Vol 7 (61) ◽  
pp. 38757-38764 ◽  
Author(s):  
Shuai He ◽  
Aize Hao ◽  
Ni Qin ◽  
Dinghua Bao

The resistive switching performance of ZnO thin films can be enhanced by decreasing the band gap and controlling oxygen vacancies.

Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1282 ◽  
Author(s):  
Zhao ◽  
Li ◽  
Ai ◽  
Wen

A kind of devices Pt/Ag/ZnO:Li/Pt/Ti with high resistive switching behaviors were prepared on a SiO2/Si substrate by using magnetron sputtering method and mask technology, composed of a bottom electrode (BE) of Pt/Ti, a resistive switching layer of ZnO:Li thin film and a top electrode (TE) of Pt/Ag. To determine the crystal lattice structure and the Li-doped concentration in the resulted ZnO thin films, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) tests were carried out. Resistive switching behaviors of the devices with different thicknesses of Li-doped ZnO thin films were studied at different set and reset voltages based on analog and digital resistive switching characteristics. At room temperature, the fabricated devices represent stable bipolar resistive switching behaviors with a low set voltage, a high switching current ratio and a long retention up to 104 s. In addition, the device can sustain an excellent endurance more than 103 cycles at an applied pulse voltage. The mechanism on how the thicknesses of the Li-doped ZnO thin films affect the resistive switching behaviors was investigated by installing conduction mechanism models. This study provides a new strategy for fabricating the resistive random access memory (ReRAM) device used in practice.


2019 ◽  
Vol 27 (04) ◽  
pp. 1950138
Author(s):  
FATMA MEYDANERİ TEZEL ◽  
İ. AFŞIN KARİPER

Undoped and silver, lithium and cobalt-doped ZnO thin films have been successfully deposited on glass by chemical bath deposition (CBD). The reaction temperature was 50∘C and the films were annealed at 400∘C for 4[Formula: see text]h in a high temperature furnace. UV/VIS spectrum was used to determine optical transmittance, optical band gap ([Formula: see text] and absorbance values of Ag:ZnO, Co:ZnO, Li:ZnO and undoped ZnO thin films. Optical band gap ([Formula: see text] and absorbance values of undoped ZnO, Ag:ZnO, Co:ZnO and Li:ZnO thin films were found as 0.0158, 0.0064, 0.2638, 0.0956 and 3.24, 3.13, 3.27, 2.96 eV, respectively. Extinction coefficients and refraction indexes of the films were found to be 0.0096, 0.0038, 0.0068, 0.019 (extinction coefficient) and 1.26, 1.14, 1.66, 2.33 (refraction index), respectively. X-ray patterns of undoped ZnO, Ag:ZnO, Co:ZnO and Li:ZnO thin films were confirmed as amorphous.


2015 ◽  
Vol 66 ◽  
pp. 147-150 ◽  
Author(s):  
Daniel A.A. Santos ◽  
Hao Zeng ◽  
Marcelo A. Macêdo

2014 ◽  
Vol 38 (1) ◽  
pp. 93-96
Author(s):  
E Hoq ◽  
MRA Bhuiyan ◽  
J Begum

Sb doped ZnO thin films having various thicknesses have been prepared onto glass substrate by using thermal evaporation method. The atomic compositions of the grown films have been determined by Energy Dispersive Analysis of X-ray (EDAX) method. The optical properties were measured by using a UV-VIS-NIR spectrophotometer (300 to 2500 nm). The EDAX analysis revealed that Sb is doped into the ZnO films. Optical properties showed high absorption coefficient (~105/cm) that direct allowed transition band gap. The optical band gap of the ZnO thin films became reduced due to the doping of Sb. DOI: http://dx.doi.org/10.3329/jbas.v38i1.20217 Journal of Bangladesh Academy of Sciences, Vol. 38, No. 1, 93-96, 2014


2021 ◽  
Vol 43 (3) ◽  
pp. 253-253
Author(s):  
Mehmet zkan Mehmet zkan ◽  
Sercen Sadik Erdem Sercen Sadik Erdem

In this paper, silver (Ag)doped Zinc Oxide(ZnO) thin films were prepared on glass and silicon substrate by using a thermionic vacuum arc technique. The surface, structural, optical characteristics of silver doped thin films have been examined by X-Ray diffractometer (XRD), field emission scanning emission electron microscopy (FESEM), atomic force microscopy (AFM), and UV-Visible spectrophotometer. As a result of these measurements, Ag, Zn and ZnO reflection planes were determined for thin films formed on Si and glass substrate. Nano crystallites have emerged in FESEM and AFM images. The produced films have low transparency. The optical band gap values were measured by photoluminescence devices at room temperature for thin films produced on silicon and glass substrate. The band gap values are very close to 3.10 eV for Ag doped ZnO thin films. The band gap of un-doped ZnO thin film is approximately 3.3 eV. It was identified that Ag doped changes the properties of the ZnO thin film.


2013 ◽  
Vol 531 ◽  
pp. 430-435 ◽  
Author(s):  
Won Mok Kim ◽  
Jin Soo Kim ◽  
Jeung-hyun Jeong ◽  
Jong-Keuk Park ◽  
Young-Jun Baik ◽  
...  

2020 ◽  
Vol 144 ◽  
pp. 106576 ◽  
Author(s):  
Shahid Atiq ◽  
M. Tamoor Ansar ◽  
Ali Hassan ◽  
S. Kumail Abbas ◽  
Taswar Iqbal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document