scholarly journals Study of the relationship between magnetic field and dielectric properties in two ferromagnetic complexes

RSC Advances ◽  
2017 ◽  
Vol 7 (76) ◽  
pp. 47913-47919 ◽  
Author(s):  
Li Yang ◽  
Jing Li ◽  
Tian-Cheng Pu ◽  
Ming Kong ◽  
Jing Zhang ◽  
...  

Two heterometallic niccolite structure frameworks [NH2(CH3)2][CrIIIMII(HCOO)6] (M = Fe, Ni) were reported and characterized by single crystal X-ray diffraction, dielectric and magnetic susceptibility measurement.

2016 ◽  
Vol 257 ◽  
pp. 107-110 ◽  
Author(s):  
Tadeusz Groń ◽  
Elzbieta Tomaszewicz ◽  
Marek Berkowski ◽  
Monika Oboz ◽  
Joachim Kusz ◽  
...  

X-ray diffraction measurement at 298 K of CdMoO4:Dy3+ showed that the molybdenum ions are tetrahedral coordinated and Cd/Dy – dodecahedral coordinated. The Dy3+ ions are randomly distributed in the unit cell, substituting the Cd2+ ones. The temperature dependence of ac and dc magnetic susceptibility showed a lack of the Curie-Weiss behaviour and a weak response to the magnetic field. The magnetization isotherms, M(H), showed a paramagnetic-diamagnetic transition at 17 K for 〈100〉 direction and at 35 K for 〈001〉 one in the magnetic field of 70 kOe. As the temperature increased this transition was moving toward smaller magnetic fields.


2015 ◽  
Vol 68 (3) ◽  
pp. 433
Author(s):  
Xiao-Min Zhang ◽  
Li-Na Meng ◽  
Jian-Qiang Li ◽  
Xue-Feng Feng ◽  
Ming-Biao Luo ◽  
...  

Two new CoII coordination compounds, namely Co[(cis-trans)-L](nip)·H2O (1) and Co[(cis-cis)-L](Hbtc)·2H2O (2) (L = N1,N4-di(pyridin-3-yl)terephthalamide, H2nip = 5-nitroisophthalic acid, H3btc = benzene-1,3,5-tricarboxylic acid), were synthesised hydrothermally and characterised by single crystal X-ray diffraction and direct current magnetic susceptibility measurement. Interestingly, the results disclose somewhat tuneable magnetic properties for compounds 1 and 2, mainly due to the distinct supramolecular interactions.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Yogesh Kumar ◽  
Rabia Sultana ◽  
Prince Sharma ◽  
V. P. S. Awana

AbstractWe report the magneto-conductivity analysis of Bi2Se3 single crystal at different temperatures in a magnetic field range of ± 14 T. The single crystals are grown by the self-flux method and characterized through X-ray diffraction, Scanning Electron Microscopy, and Raman Spectroscopy. The single crystals show magnetoresistance (MR%) of around 380% at a magnetic field of 14 T and a temperature of 5 K. The Hikami–Larkin–Nagaoka (HLN) equation has been used to fit the magneto-conductivity (MC) data. However, the HLN fitted curve deviates at higher magnetic fields above 1 T, suggesting that the role of surface-driven conductivity suppresses with an increasing magnetic field. This article proposes a speculative model comprising of surface-driven HLN and added quantum diffusive and bulk carriers-driven classical terms. The model successfully explains the MC of the Bi2Se3 single crystal at various temperatures (5–200 K) and applied magnetic fields (up to 14 T).


2013 ◽  
Vol 68 (9) ◽  
pp. 971-978 ◽  
Author(s):  
Inga Schellenberg ◽  
Ute Ch. Rodewald ◽  
Christian Schwickert ◽  
Matthias Eul ◽  
Rainer Pöttgen

The ternary antimonides RE4T7Sb6 (RE=Gd-Lu; T =Ru, Rh) have been synthesized from the elements by arc-melting and subsequent annealing in an induction furnace. The samples have been characterized by powder X-ray diffraction. Four structures were refined on the basis of single-crystal X-ray diffractometer data: U4Re7Si6 type, space group Im3m with a=862.9(2) pm, wR2=0.0296, 163 F2 values for Er4Ru7Sb6; a=864.1(1) pm, wR2=0.1423, 153 F2 values for Yb4Ru7Sb6; a=872.0(2) pm, wR2=0.0427, 172 F2 values for Tb4Rh7Sb6; and a=868.0(2) pm, wR2=0.0529, 154 F2 values for Er4Rh7Sb6, with 10 variables per refinement. The structures have T1@Sb6 octahedra and slightly distorted RE@T26Sb6 cuboctahedra as building units. The distorted cuboctahedra are condensed via all trapezoidal faces, and this network leaves octahedral voids for the T1 atoms. The ruthenium-based series of compounds was studied by temperature-dependent magnetic susceptibility measurements. Lu4Ru7Sb6 is Pauli-paramagnetic. The antimonides RE4Ru7Sb6 with RE=Dy, Ho, Er, and Tm show Curie-Weiss paramagnetism. Antiferromagnetic ordering occurs at 10.0(5), 5.1(5) and 4.0(5) K for Dy4Ru7Sb6, Ho4Ru7Sb6 and Er4Ru7Sb6, respectively, while Tm4Ru7Sb6 remains paramagnetic. Yb4Ru7Sb6 is an intermediate-valent compound with a reduced magnetic moment of 3.71(1) μB per Yb as compared to 4.54 μB for a free Yb3+ ion


2010 ◽  
Vol 74 (6) ◽  
pp. 943-950 ◽  
Author(s):  
L. M. Sochalski-Kolbus ◽  
R. J. Angel ◽  
F. Nestola

AbstractThe volumes of a disordered An20 (Qod = 0.15), a disordered An78 (Qod = 0.55) and an ordered An78 (Qod = 0.81) were determined up to 9.569(10) GPa, 8.693(5) GPa and 9.765(10) GPa, respectively, using single-crystal X-ray diffraction. The volume variations with pressure for these samples are described with 4th-order Birch Murnaghan equations of state with V0 = 669.88(7) Å3, K0 = 59.7(7) GPa. K′ = 5.7(5), K″ = −0.8(2) GPa−1 for disordered An20, V0 = 1340.48(10) Å3, K0 = 77.6(5) GPa, K0′ = 4.0(3), K″ = -0.59(9) GPa−1 for disordered An78 and V0 = 1339.62(6) A3, K0 = 77.4(6) GPa, K′ = 4.2(4), and K″ = −0.7(1) GPa−1 for ordered An78. Along with data from previous studies (An0 ordered, An0 disordered and An2o ordered), the volumes for the disordered samples were found to be up to ∼0.3% larger than the ordered samples of the same composition. The disordered samples are softer than the ordered samples of the same composition by 4(1)% for An0, 2.5(9)% for An20 and essentially zero for An78. The relationship between volume increase, density decrease, and decreasing bulk modulus with increasing disorder is in accordance with Birch's Law.


2004 ◽  
Vol 848 ◽  
Author(s):  
Evan Lyle Thomas ◽  
Erin E. Erickson ◽  
Monica Moldovan ◽  
David P. Young ◽  
Julia Y. Chan

AbstractA new member of the LnMIn5 family, ErCoIn5, has been synthesized by a flux-growth method. The structure of ErCoIn5 was determined by single crystal X-ray diffraction. It crystallizes in the tetragonal space group P4/mmm, Z = 1, with lattice parameters a = 4.5400(4) and c = 7.3970(7) Å, and V = 152.46(2) Å3. Electrical resistivity data show metallic behavior. Magnetic susceptibility measurements show this compound to be antiferromagnetic with TN = 5.1 K. We compare these experimental results with those of LaCoIn5 in an effort to better understand the effect of the structural trends observed on the transport and magnetic properties.


Crystals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 561 ◽  
Author(s):  
Tatsuya Tanaka ◽  
Chiaki Tsuboi ◽  
Kazuaki Aburaya ◽  
Fumiko Kimura ◽  
Masataka Maeyama ◽  
...  

We previously reported on a method for X-ray single-crystal structure determination from a powder sample via a magnetically oriented microcrystal suspension (MOMS). The method was successfully applied to orthorhombic microcrystals (L-alanine, P212121). In this study, we apply this method to monoclinic microcrystals. Unlike most of the orthorhombic MOMSs, monoclinic MOMSs exhibit two or four orientations with the same magnetic energy (we refer to this as twin orientations), making data processing difficult. In this paper, we perform a MOMS experiment for a powder sample of monoclinic microcrystal (α-glycine, P21/n) to show that our method can also be applied to monoclinic crystals. The single-crystal structure determined in this work is in good agreement with the reported one performed on a real single crystal. Furthermore, the relationship between the crystallographic and magnetic susceptibility axes is determined.


2017 ◽  
Vol 72 (7) ◽  
pp. 511-515 ◽  
Author(s):  
Sebastian Stein ◽  
Lukas Heletta ◽  
Rainer Pöttgen

AbstractGdCuMg has been synthesized by induction-melting of the elements in a sealed niobium ampoule followed by annealing in a muffle furnace. The sample was studied by powder and single crystal X-ray diffraction: ZrNiAl type, P6̅2m (a=749.2(4), c=403.3(1) pm), wR2=0.0242, 315 F2 values and 15 variables. Temperature dependent magnetic susceptibility measurements have revealed an experimental magnetic moment of 8.54(1) μB per Gd atom. GdCuMg orders ferromagnetically below TC=82.2(5) K and based on the magnetization isotherms it can be classified as a soft ferromagnet.


2008 ◽  
Vol 41 (3) ◽  
pp. 584-591 ◽  
Author(s):  
Jiandong Fan ◽  
Huaijin Zhang ◽  
Wentao Yu ◽  
Haohai Yu ◽  
Jiyang Wang ◽  
...  

A transparent Yb3+:NaY(WO4)2single crystal with dimensions of 30 mm (diameter) × 40 mm has been grown by the Czochralski method. The high crystalline quality of the as-grown Yb3+:NaY(WO4)2crystals was confirmed by high-resolution X-ray diffraction. The effective segregation coefficients of elemental Yb, Na, Y and W in Yb3+:NaY(WO4)2were measured using the X-ray fluorescence method. Powder and single-crystal X-ray diffraction data of NaYb0.05Y0.95(WO4)2are reported. The structure refinement shows that NaYb0.05Y0.95(WO4)2crystallizes in the tetragonal space groupI41/a, witha=b= 5.2039 (2),c= 11.2838 (9) Å, α = β = γ = 90°,V= 305.57 (3) Å3andZ= 2. A series of possible growth faces (hkl) were determined from the crystal lattice and symmetry according to the Bravais–Friedel Donnay–Harker theory, and the relationship among crystal structure, growth habits and crystal morphology is discussed. In addition, the thermal properties of the crystal, including the specific heat, thermal expansion, thermal diffusion and thermal conductivity, were carefully investigated. The anisotropy of the crystal thermal conductivities is explained from the point of view of the crystal structure.


2017 ◽  
Vol 909 ◽  
pp. 300-305 ◽  
Author(s):  
Takehito Ikeuchi ◽  
Akihiro Koyama ◽  
Muneyuki Imafuku ◽  
Shun Fujieda ◽  
Yusuke Onuki ◽  
...  

We carried out in situ tri-axial magnetostriction analysis for cube-oriented Fe-18%Ga single crystal by X-ray diffraction measurement under magnetic field. Periodic change in tri-axial magnetostriction with applied magnetic field direction was clearly observed. However, those values in [100] and [010] directions were not equivalent. Theoretical calculation of magnetostriction considering domain structure revealed this is caused by the non-equivalent volume fraction of initial magnetic domains.


Sign in / Sign up

Export Citation Format

Share Document