scholarly journals Dicyano- and tetracyanopentacene: foundation of an intriguing new class of easy-to-synthesize organic semiconductors

2017 ◽  
Vol 5 (10) ◽  
pp. 2603-2610 ◽  
Author(s):  
Florian Glöcklhofer ◽  
Andreas Petritz ◽  
Esther Karner ◽  
Michael J. Bojdys ◽  
Barbara Stadlober ◽  
...  

Extraordinarily low LUMO levels, dense molecular packing, an intriguing packing motif, reversible bleaching and OTFT operability under ambient conditions are revealed in a detailed investigation of multi-cyanated pentacenes.

2001 ◽  
Vol 708 ◽  
Author(s):  
Janos Veres ◽  
Simon Ogier ◽  
Stephen Leeming ◽  
Beverley Brown ◽  
Domenico Cupertino

ABSTRACTThe rapidly expanding field of organic semiconductors for display and low-cost electronic applications requires materials, which not only have high mobility but also benefit from solution processability and environmental stability. In this paper we present a new class of solution coatable organic materials with excellent stability to air and light. Spin-coated FET devices operate at ambient conditions without encapsulation and show p-type field-effect mobilities of 2 x 10-3 cm2V-1s-1 and on/off ratios greater than 104. Thin films can be deposited from common organic solvents onto a variety of substrates. These films are mechanically robust and can withstand temperatures in excess of 100 °C without significant changes in electrical performance. FET switching and transient characteristics at higher frequencies are also discussed. These types of materials should find applications in many areas of flexible electronics.


2005 ◽  
Vol 871 ◽  
Author(s):  
Yuning Li ◽  
Yiliang Wu ◽  
Beng Ong

AbstractProperly functionalized indolo[3,2-b]carbazoles represent a new class of stable, high-mobility organic semiconductors for organic thin-film transistor applications. Both 5,11-disubstituted and peripherally substituted indolo[3,2-b]carbazoles with proper substituents self-organized into highly crystalline terrace-layered structures under suitable processing conditions. Organic TFTs using channel semiconductors of this nature exhibited excellent field-effect transistor properties, with mobility to 0.14 cm2 V-1 s-1 and current on/off ratio to 107. By virtue of their relatively low HOMO levels and large band gaps, this class of semiconductors also displayed excellent environmental stability under ambient conditions, an appealing characteristic for organic TFT applications.


2011 ◽  
Vol 2 ◽  
pp. 802-808 ◽  
Author(s):  
Elena Mena-Osteritz ◽  
Marta Urdanpilleta ◽  
Erwaa El-Hosseiny ◽  
Berndt Koslowski ◽  
Paul Ziemann ◽  
...  

The self-assembly properties of a series of functionalized regioregular oligo(3-alkylthiophenes) were investigated by using scanning tunneling microscopy (STM) at the liquid–solid interface under ambient conditions. The characteristics of the 2-D crystals formed on the (0001) plane of highly ordered pyrolitic graphite (HOPG) strongly depend on the length of the π-conjugated oligomer backbone, on the functional groups attached to it, and on the alkyl substitution pattern on the individual thiophene units. Theoretical calculations were performed to analyze the geometry and electronic density of the molecular orbitals as well as to analyze the intermolecular interactions, in order to obtain models of the 2-D molecular ordering on the substrate.


2021 ◽  
Vol 118 (42) ◽  
pp. e2111988118
Author(s):  
Marie E. Fiori ◽  
Kushal Bagchi ◽  
Michael F. Toney ◽  
M. D. Ediger

Glasses prepared by physical vapor deposition (PVD) are anisotropic, and the average molecular orientation can be varied significantly by controlling the deposition conditions. While previous work has characterized the average structure of thick PVD glasses, most experiments are not sensitive to the structure near an underlying substrate or interface. Given the profound influence of the substrate on the growth of crystalline or liquid crystalline materials, an underlying substrate might be expected to substantially alter the structure of a PVD glass, and this near-interface structure is important for the function of organic electronic devices prepared by PVD, such as organic light-emitting diodes. To study molecular packing near buried organic–organic interfaces, we prepare superlattice structures (stacks of 5- or 10-nm layers) of organic semiconductors, Alq3 (Tris-(8-hydroxyquinoline)aluminum) and DSA-Ph (1,4-di-[4-(N,N-diphenyl)amino]styrylbenzene), using PVD. Superlattice structures significantly increase the fraction of the films near buried interfaces, thereby allowing for quantitative characterization of interfacial packing. Remarkably, both X-ray scattering and spectroscopic ellipsometry indicate that the substrate exerts a negligible influence on PVD glass structure. Thus, the surface equilibration mechanism previously advanced for thick films can successfully describe PVD glass structure even within the first monolayer of deposition on an organic substrate.


2003 ◽  
Vol 771 ◽  
Author(s):  
Antonio Facchetti ◽  
Myung-Han Yoon ◽  
Howard E. Katz ◽  
Melissa Mushrush ◽  
Tobin J. Marks

AbstractOrganic semiconductors exhibiting complementary-type carrier mobility are the key components for the development of the field of “gplastic electronics” We present here a novel series of α,ω- and isomerically pure ββ'-diperfluorohexyl-substituted thiophene and study the impact of fluoroalkyl substitution and conjugation length vis-a-vis the corresponding fluorinefree analogues. Trends between the fluorinated and fluorine-free families in molecular packing, HOMO-LUMO gap, and π-π interactions are found to be strikingly similar. TFT measurements indicate that all members of the fluorinated series are n-type semiconductors


ChemInform ◽  
2009 ◽  
Vol 40 (12) ◽  
Author(s):  
Afshin Dadvand ◽  
Fabio Cicoira ◽  
Konstantin Yu. Chernichenko ◽  
Elizabeth S. Balenkova ◽  
Reyes M. Osuna ◽  
...  

2003 ◽  
Vol 15 (22) ◽  
pp. 1939-1943 ◽  
Author(s):  
R. de Bettignies ◽  
Y. Nicolas ◽  
P. Blanchard ◽  
E. Levillain ◽  
J.-M. Nunzi ◽  
...  

Author(s):  
Andrey Sosorev ◽  
Dmitry Dominskiy ◽  
Ivan Chernyshov ◽  
Roman Efremov

Chemical versatility of organic semiconductors provides nearly unlimited opportunities for tuning their electronic properties. However, despite decades of research, relationship between molecular structure, molecular packing and charge mobility in these materials remains poorly understood. This reduces the search for high-mobility organic semiconductors to the inefficient trial-and-error approach. For clarifying the abovementioned relationship, investigations of the effect of small changes in the chemical structure on OSs properties are particularly important. In this study, we address computationally the impact of substitution of C-H atom pairs by nitrogen atoms (N-substitution) on molecular properties, molecular packing and charge mobility of crystalline oligoacenes. Besides of decreasing frontier molecular orbital levels, N-substitution dramatically alters molecular electrostatic potential yielding pronounced electron-rich and electron-deficient areas. These changes in the molecular electrostatic potential strengthen face-to-face and edge-to-edge interactions in the corresponding crystals and result in the crossover from the herringbone packing motif to π-stacking. When the electron-rich and electron-deficient areas are large, sharply defined and, probably, have certain symmetry, charge mobility increases up to 3-4 cm2V-1s-1. The results obtained highlight the potential of azaacenes for application in organic electronic devices and are expected to facilitate rational design of organic semiconductors for steady improvement of organic electronics.


Sign in / Sign up

Export Citation Format

Share Document