Facile and scalable carbon- and binder-free electrode materials for ultra-stable and highly improved Li–O2 batteries

2018 ◽  
Vol 54 (23) ◽  
pp. 2858-2861 ◽  
Author(s):  
Cuiping Luo ◽  
Jiade Li ◽  
Shengfu Tong ◽  
Shiman He ◽  
Jun Li ◽  
...  

A scalable and ultra-stable carbon- and binder-free Ti@Ru material was synthesized which exhibited potential applications in Li–O2 batteries.

2021 ◽  
Author(s):  
Yucai Li ◽  
Yan Zhao ◽  
Shiwei Song ◽  
Jian wang

Abstract Core-shell structured NiCo2S4@NiMoO4 is considered to be one of the most promising electrode materials for supercapacitors due to its high specific capacitance and excellent cycle performance. In this work, we report NiCo2S4@NiMoO4 nanosheets on Ni foam by two-step fabricated method. The as-obtained product has high capacitance of 1102.5 F g− 1 at 1 A g− 1. The as-assembled supercapacitor has also a high energy density of 37.6 W h kg− 1 and superior cycle performance with 85% capacitance retention. The electrode materials reported here might exhibits potential applications in future energy storage devices.


2020 ◽  
Vol 272 ◽  
pp. 118953 ◽  
Author(s):  
Nengneng Xu ◽  
Joshua A. Wilson ◽  
Yu-Dong Wang ◽  
Tianshun Su ◽  
Yanan Wei ◽  
...  

2019 ◽  
Vol 236 ◽  
pp. 167-170 ◽  
Author(s):  
Rajneesh Kumar Mishra ◽  
Mokurala Krishnaih ◽  
Seung Yeob Kim ◽  
Ajay Kumar Kushwaha ◽  
Sung Hun Jin

RSC Advances ◽  
2020 ◽  
Vol 10 (55) ◽  
pp. 33428-33435
Author(s):  
Xiaoyun Liu ◽  
Qian Li ◽  
Xin Zhang ◽  
Yueqiu Jiang

Rational design of electrode materials plays a significant role in potential applications such as energy storage and conversion.


2015 ◽  
Vol 1095 ◽  
pp. 333-340
Author(s):  
Chuan Ning Yang ◽  
Yong Quan Qing ◽  
Chang Sheng Liu

Graphene paper (GP) with layered structure and highly conductive network is fabricated by a facile technique of vacuum filtration and studied as a single-component and binder-free anode of lithium ion batteries (LIBs). The process of fabrication of GP without any binder and high-temperature treatment, in the meantime, great improvement in both the capacity and cycling performance of the GP electrodes have compared with other kinds of traditional graphite electrode materials. Given the simplifying anode fabrication, low manufacturing costs and many electrochemical properties of the GP anode, it is regarded as an excellent anode material of LIB with great promise for its both excellent cycling performance and electrochemical properties. The specific capacity can reach to over 200 mAhg-1after 60 charge-discharge cycles under the current rate of 50 mAg-1.


Crystals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 14
Author(s):  
Sajid Ali Ansari ◽  
Nazish Parveen ◽  
Mohd Al Saleh Al-Othoum ◽  
Mohammad Omaish Ansari

The design and development of electrode materials for energy-storage applications is an area of prime focus around the globe because of the shortage of natural resources. In this study, we developed a method for preparing a novel three-dimensional binder-free pseudocapacitive NiZn2O4 active material, which was grown directly over nickel foam (NiZn2O4@3D-NF), using a simple one-step hydrothermal process. The material was characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Cyclic voltammetry, galvanostatic charge–discharge, and electrochemical impedance spectroscopy techniques were employed to evaluate the pseudocapacitive performance of the NiZn2O4 active material in a three-electrode assembly cell. The prepared NiZn2O4@3D-NF electrode exhibited an excellent specific capacitance, of 1706.25 F/g, compared to that of the NiO@3D-NF (1050 F/g) electrode because it has the bimetallic characteristics of both zinc and nickel. The NiZn2O4@3D-NF electrode showed better cyclic stability (87.5% retention) compared to the NiO@3D-NF electrode (80% retention) after 5000 cycles at a fixed current density, which also supports the durability of the NiZn2O4@3D-NF electrode. The characteristics of NiZn2O4@3D-NF include corrosion resistance, high conductivity, an abundance of active sites for electrochemical reaction, a high surface area, and synergism between the bimetallic oxides, which make it a suitable candidate for potential application in the field of energy storage.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1141 ◽  
Author(s):  
José D. Velásquez ◽  
Monika Tomczykowa ◽  
Marta E. Plonska-Brzezinska ◽  
Manuel N. Chaur

Herein, we report the surface functionalization of carbon nano-onions (CNOs) through an amidation reaction that occurs between the oxidized CNOs and 4-(pyren-4-yl)butanehydrazide. Raman and Fourier transform infrared spectroscopy methods were used to confirm the covalent functionalization. The percentage or number of groups in the outer shell was estimated with thermal gravimetric analysis. Finally, the potential applications of the functionalized CNOs as electrode materials in supercapacitors were evaluated by cyclic voltammetry and electrochemical impedance spectroscopy. Functionalization increased the specific capacitance by approximately 138% in comparison to that of the pristine CNOs, while acid-mediated oxidation reduced the specific capacitance of the nanomaterial by 24%.


Sign in / Sign up

Export Citation Format

Share Document