Facile preparation of multifunctionalisable ‘stealth’ upconverting nanoparticles for biomedical applications

2018 ◽  
Vol 47 (26) ◽  
pp. 8595-8604 ◽  
Author(s):  
Anne Nsubuga ◽  
Massimo Sgarzi ◽  
Kristof Zarschler ◽  
Manja Kubeil ◽  
René Hübner ◽  
...  

Hide and Seek. Alendronate-modified upconverting nanoparticles display high colloidal stability, protein corona resistance, bright upconversion luminescence (800 nm excitation), and contain multifunctionalisation sites.

Pharmaceutics ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 261
Author(s):  
Orlando Donoso-González ◽  
Lucas Lodeiro ◽  
Álvaro E. Aliaga ◽  
Miguel A. Laguna-Bercero ◽  
Soledad Bollo ◽  
...  

Gold nanostars (AuNSs) exhibit modulated plasmon resonance and have a high SERS enhancement factor. However, their low colloidal stability limits their biomedical application as a nanomaterial. Cationic β-cyclodextrin-based polymer (CCD/P) has low cytotoxicity, can load and transport drugs more efficiently than the corresponding monomeric form, and has an appropriate cationic group to stabilize gold nanoparticles. In this work, we functionalized AuNSs with CCD/P to load phenylethylamine (PhEA) and piperine (PIP) and evaluated SERS-based applications of the products. PhEA and PIP were included in the polymer and used to functionalize AuNSs, forming a new AuNS-CCD/P-PhEA-PIP nanosystem. The system was characterized by UV–VIS, IR, and NMR spectroscopy, TGA, SPR, DLS, zeta potential analysis, FE-SEM, and TEM. Additionally, Raman optical activity, SERS analysis and complementary theoretical studies were used for characterization. Minor adjustments increased the colloidal stability of AuNSs. The loading capacity of the CCD/P with PhEA-PIP was 95 ± 7%. The physicochemical parameters of the AuNS-CCD/P-PhEA-PIP system, such as size and Z potential, are suitable for potential biomedical applications Raman and SERS studies were used to monitor PhEA and PIP loading and their preferential orientation upon interaction with the surface of AuNSs. This unique nanomaterial could be used for simultaneous drug loading and SERS-based detection.


2015 ◽  
Vol 3 (16) ◽  
pp. 3331-3339 ◽  
Author(s):  
Zi Gu ◽  
Huali Zuo ◽  
Li Li ◽  
Aihua Wu ◽  
Zhi Ping Xu

We introduced a new strategy of albumin pre-coating to effectively stabilise layered double hydroxide (LDH) nanoparticles for biomedical applications.


2018 ◽  
Vol 1 (12) ◽  
pp. 6760-6772 ◽  
Author(s):  
J. A. Marins ◽  
T. Montagnon ◽  
H. Ezzaier ◽  
Ch. Hurel ◽  
O. Sandre ◽  
...  

Nanomaterials ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 776 ◽  
Author(s):  
Erzsébet Illés ◽  
Márta Szekeres ◽  
Ildikó Tóth ◽  
Katalin Farkas ◽  
Imre Földesi ◽  
...  

For biomedical applications, superparamagnetic nanoparticles (MNPs) have to be coated with a stealth layer that provides colloidal stability in biological media, long enough persistence and circulation times for reaching the expected medical aims, and anchor sites for further attachment of bioactive agents. One of such stealth molecules designed and synthesized by us, poly(polyethylene glycol methacrylate-co-acrylic acid) referred to as P(PEGMA-AA), was demonstrated to make MNPs reasonably resistant to cell internalization, and be an excellent candidate for magnetic hyperthermia treatments in addition to possessing the necessary colloidal stability under physiological conditions (Illés et al. J. Magn. Magn. Mater. 2018, 451, 710–720). In the present work, we elaborated on the molecular background of the formation of the P(PEGMA-AA)-coated MNPs, and of their remarkable colloidal stability and salt tolerance by using potentiometric acid–base titration, adsorption isotherm determination, infrared spectroscopy (FT-IR ATR), dynamic light scattering, and electrokinetic potential determination methods. The P(PEGMA-AA)@MNPs have excellent blood compatibility as demonstrated in blood sedimentation, smears, and white blood cell viability experiments. In addition, blood serum proteins formed a protein corona, protecting the particles against aggregation (found in dynamic light scattering and electrokinetic potential measurements). Our novel particles also proved to be promising candidates for MRI diagnosis, exhibiting one of the highest values of r2 relaxivity (451 mM−1s−1) found in literature.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Hui Zhou ◽  
Xiaodong Zeng ◽  
Anguo Li ◽  
Wenyi Zhou ◽  
Lin Tang ◽  
...  

AbstractNIR-II fluorophores have shown great promise for biomedical applications with superior in vivo optical properties. To date, few small-molecule NIR-II fluorophores have been discovered with donor-acceptor-donor (D-A-D) or symmetrical structures, and upconversion-mitochondria-targeted NIR-II dyes have not been reported. Herein, we report development of D-A type thiopyrylium-based NIR-II fluorophores with frequency upconversion luminescence (FUCL) at ~580 nm upon excitation at ~850 nm. H4-PEG-PT can not only quickly and effectively image mitochondria in live or fixed osteosarcoma cells with subcellular resolution at 1 nM, but also efficiently convert optical energy into heat, achieving mitochondria-targeted photothermal cancer therapy without ROS effects. H4-PEG-PT has been further evaluated in vivo and exhibited strong tumor uptake, specific NIR-II signals with high spatial and temporal resolution, and remarkable NIR-II image-guided photothermal therapy. This report presents the first D-A type thiopyrylium NIR-II theranostics for synchronous upconversion-mitochondria-targeted cell imaging, in vivo NIR-II osteosarcoma imaging and excellent photothermal efficiency.


2013 ◽  
Vol 117 (39) ◽  
pp. 20320-20331 ◽  
Author(s):  
Rina Venerando ◽  
Giovanni Miotto ◽  
Massimiliano Magro ◽  
Marco Dallan ◽  
Davide Baratella ◽  
...  

2016 ◽  
Vol 18 (8) ◽  
Author(s):  
Simona Argentiere ◽  
Claudia Cella ◽  
Maura Cesaria ◽  
Paolo Milani ◽  
Cristina Lenardi

2020 ◽  
Vol 8 (22) ◽  
pp. 4870-4882 ◽  
Author(s):  
Ana Peigneux ◽  
Emanuel A. Glitscher ◽  
Rawan Charbaji ◽  
Christoph Weise ◽  
Stefanie Wedepohl ◽  
...  

Colloidal stability and cellular uptake of MamC-biomimetic magnetite nanoparticles (BMNPs) incubated with human plasma (PC-BMNPs).


2020 ◽  
Vol 6 (1) ◽  
pp. 12 ◽  
Author(s):  
Mariangela Fedel

Carbon nanostructures (CNs), such as carbon nanotubes, fullerenes, carbon dots, nanodiamonds as well as graphene and its derivatives present a tremendous potential for various biomedical applications, ranging from sensing to drug delivery and gene therapy, biomedical imaging and tissue engineering. Since most of these applications encompass blood contact or intravenous injection, hemocompatibility is a critical aspect that must be carefully considered to take advantage of CN exceptional characteristics while allowing their safe use. This review discusses the hemocompatibility of different classes of CNs with the purpose of providing biomaterial scientists with a comprehensive vision of the interactions between CNs and blood components. The various complex mechanisms involved in blood compatibility, including coagulation, hemolysis, as well as the activation of complement, platelets, and leukocytes will be considered. Special attention will be paid to the role of CN size, structure, and surface properties in the formation of the protein corona and in the processes that drive blood response. The aim of this review is to emphasize the importance of hemocompatibility for CNs intended for biomedical applications and to provide some valuable insights for the development of new generation particles with improved performance and safety in the physiological environment.


Sign in / Sign up

Export Citation Format

Share Document