Electromagnetic interference (EMI) shielding performance of lightweight metal decorated carbon nanostructures dispersed in flexible polyvinylidene fluoride films

2018 ◽  
Vol 42 (15) ◽  
pp. 12945-12953 ◽  
Author(s):  
Kumaran Rengaswamy ◽  
Dinesh Kumar Sakthivel ◽  
Alagar Muthukaruppan ◽  
Balasubramanian Natesan ◽  
Subramanian Venkatachalam ◽  
...  

This work demonstrates the enhanced EMI shielding performance of metal/carbon nanomaterials incorporated in a PVDF matrix with better electrical properties.


Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1064 ◽  
Author(s):  
Mohammad Arjmand ◽  
Soheil Sadeghi ◽  
Ivonne Otero Navas ◽  
Yalda Zamani Keteklahijani ◽  
Sara Dordanihaghighi ◽  
...  

The similar molecular structure but different geometries of the carbon nanotube (CNT) and graphene nanoribbon (GNR) create a genuine opportunity to assess the impact of nanofiller geometry (tube vs. ribbon) on the electromagnetic interference (EMI) shielding of polymer nanocomposites. In this regard, GNR and its parent CNT were melt mixed with a polyvinylidene fluoride (PVDF) matrix using a miniature melt mixer at various nanofiller loadings, i.e., 0.3, 0.5, 1.0 and 2.0 wt%, and then compression molded. Molecular simulations showed that CNT would have a better interaction with the PVDF matrix in any configuration. Rheological results validated that CNTs feature a far stronger network (mechanical interlocking) than GNRs. Despite lower powder conductivity and a comparable dispersion state, it was interestingly observed that CNT nanocomposites indicated a highly superior electrical conductivity and EMI shielding at higher nanofiller loadings. For instance, at 2.0 wt%, CNT/PVDF nanocomposites showed an electrical conductivity of 0.77 S·m−1 and an EMI shielding effectiveness of 11.60 dB, which are eight orders of magnitude and twofold higher than their GNR counterparts, respectively. This observation was attributed to their superior conductive network formation and the interlocking ability of the tubular nanostructure to the ribbon-like nanostructure, verified by molecular simulations and rheological assays.





2020 ◽  
pp. 089270572092512
Author(s):  
Ahsan Nazir

The extensive growth of telecommunication and electronic devices has led to significant concerns regarding electromagnetic (EM) radiations. Thus, the effect of EM radiations can be reduced by using highly efficient shielding materials. This review aimed to explore the electromagnetic interference (EMI) shielding materials based on polyvinylidene fluoride (PVDF), polyurethane (PU), and polyaniline (PANI) composites. It was found that the composites based on PVDF, PU, and PANI polymers have attracted considerable interest and highly efficient for EMI shielding due to their remarkable properties like lightweight, thermal stability, processing benefits, cheap, tremendous flexibility, and excellent resistance to corrosion. Hence, the PVDF-, PU-, and PANI-based composites are efficient EMI shielding materials.



RSC Advances ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 27-33 ◽  
Author(s):  
Xiaoting Liu ◽  
Tianrui Chen ◽  
Hao Liang ◽  
Faxiang Qin ◽  
Hui Yang ◽  
...  

We report a facile, eco-friendly approach to prepare the robust graphene/silver nanowires aerogel with high compressive strength and excellent EMI shielding performance due to its unique nanostructure and good electrical properties.



2015 ◽  
Vol 3 (26) ◽  
pp. 6589-6599 ◽  
Author(s):  
Mao-Sheng Cao ◽  
Xi-Xi Wang ◽  
Wen-Qiang Cao ◽  
Jie Yuan

Ultrathin graphene, a 2D material, demonstrates outstanding features and rapid growth for EMI shielding due to its strong absorption towards electromagnetic waves in composites. It is sought after for communication, electronic devices, information security, electromagnetic pollution defense and healthcare.



2017 ◽  
Vol 31 (32) ◽  
pp. 1750301 ◽  
Author(s):  
Heeralal Gargama ◽  
Awalendra Kumar Thakur ◽  
Sanjay Kumar Chaturvedi

This work reports, microwave characterization of nanocrystalline nickel-polyvinylidene fluoride (n-Ni/PVDF) composites with an aim to explore their electromagnetic interference (EMI) shielding and absorption properties. The composites were fabricated using compression hot molding process at an optimum level of temperature and pressure. The electrical properties of the samples are computed using the measured scattering parameters in the X-band. The wave absorption capability of a single layer absorbing structure is theoretically evaluated by employing the computed electrical parameters. Besides, the shielding effectiveness (SE) of free standing samples are also calculated using transmission line model and compared with the experimentally obtained results to validate the theoretical model. High SE (42.87 dB) and absorption (−14.37) obtained in this work, suggest futuristic applications of n-Ni/PVDF composites for EMI shielding and wave absorption.



RSC Advances ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 2368-2377 ◽  
Author(s):  
Kui Cheng ◽  
Haoliang Li ◽  
Mohan Zhu ◽  
Hanxun Qiu ◽  
Junhe Yang

With the increasing demands of the electronics industry, electromagnetic interference (EMI) shielding has become a critical issue that severely restricts the application of devices.



Nanoscale ◽  
2020 ◽  
Vol 12 (36) ◽  
pp. 18918-18930
Author(s):  
Yoav Chemla ◽  
Efrat Shawat Avraham ◽  
Amos Markus ◽  
Eti Teblum ◽  
Aviad Slotky ◽  
...  

Carbon nanomaterials have been introduced as a scaffold for various biological applications due to their unique physical and electrical properties.



2017 ◽  
Vol 5 (32) ◽  
pp. 6437-6450 ◽  
Author(s):  
Haiyun Liu ◽  
Lina Zhang ◽  
Mei Yan ◽  
Jinghua Yu

Carbon nanostructures have unique physical, chemical, and electrical properties, which have attracted great interest from scientists. Carbon dots, carbon nanotubes, graphene and other carbon nanomaterials are being successfully implemented in electrochemical sensing, biomedical and biological imaging.



2018 ◽  
Author(s):  
Erik Leonhardt ◽  
Jeff M. Van Raden ◽  
David Miller ◽  
Lev N. Zakharov ◽  
Benjamin Aleman ◽  
...  

Extended carbon nanostructures, such as carbon nanotubes (CNTs), exhibit remarkable properties but are difficult to synthesize uniformly. Herein, we present a new class of carbon nanomaterials constructed via the bottom-up self-assembly of cylindrical, atomically-precise small molecules. Guided by supramolecular design principles and circle packing theory, we have designed and synthesized a fluorinated nanohoop that, in the solid-state, self-assembles into nanotube-like arrays with channel diameters of precisely 1.63 nm. A mild solution-casting technique is then used to construct vertical “forests” of these arrays on a highly-ordered pyrolytic graphite (HOPG) surface through epitaxial growth. Furthermore, we show that a basic property of nanohoops, fluorescence, is readily transferred to the bulk phase, implying that the properties of these materials can be directly altered via precise functionalization of their nanohoop building blocks. The strategy presented is expected to have broader applications in the development of new graphitic nanomaterials with π-rich cavities reminiscent of CNTs.



Sign in / Sign up

Export Citation Format

Share Document