scholarly journals Unconventional locomotion of liquid metal droplets driven by magnetic fields

Soft Matter ◽  
2018 ◽  
Vol 14 (35) ◽  
pp. 7113-7118 ◽  
Author(s):  
Jian Shu ◽  
Shi-Yang Tang ◽  
Zhihua Feng ◽  
Weihua Li ◽  
Xiangpeng Li ◽  
...  

We report an innovative method for controlling the locomotion of liquid metal droplets using Lorentz force induced by a magnetic field.

2019 ◽  
Vol 9 (7) ◽  
pp. 1421 ◽  
Author(s):  
Jian Shu ◽  
Shi-Yang Tang ◽  
Sizepeng Zhao ◽  
Zhihua Feng ◽  
Haoyao Chen ◽  
...  

The self-rotation of liquid metal droplets (LMDs) has garnered potential for numerous applications, such as chip cooling, fluid mixture, and robotics. However, the controllable self-rotation of LMDs utilizing magnetic fields is still underexplored. Here, we report a novel method to induce self-rotation of LMDs solely utilizing a rotating magnetic field. This is achieved by rotating a pair of permanent magnets around a LMD located at the magnetic field center. The LMD experiences Lorenz force generated by the relative motion between the droplet and the permanent magnets and can be rotated. Remarkably, unlike the actuation induced by electrochemistry, the rotational motion of the droplet induced by magnetic fields avoids the generation of gas bubbles and behaves smoothly and steadily. We investigate the main parameters that affect the self-rotational behaviors of LMDs and validate the theory of this approach. We further demonstrate the ability of accelerating cooling and a mixer enabled by the self-rotation of a LMD. We believe that the presented technique can be conveniently adapted by other systems after necessary modifications and enables new progress in microfluidics, microelectromechanical (MEMS) applications, and micro robotics.


2016 ◽  
Vol 791 ◽  
pp. 568-588 ◽  
Author(s):  
Andrew D. Gilbert ◽  
Joanne Mason ◽  
Steven M. Tobias

In the process of flux expulsion, a magnetic field is expelled from a region of closed streamlines on a $TR_{m}^{1/3}$ time scale, for magnetic Reynolds number $R_{m}\gg 1$ ($T$ being the turnover time of the flow). This classic result applies in the kinematic regime where the flow field is specified independently of the magnetic field. A weak magnetic ‘core’ is left at the centre of a closed region of streamlines, and this decays exponentially on the $TR_{m}^{1/2}$ time scale. The present paper extends these results to the dynamical regime, where there is competition between the process of flux expulsion and the Lorentz force, which suppresses the differential rotation. This competition is studied using a quasi-linear model in which the flow is constrained to be axisymmetric. The magnetic Prandtl number $R_{m}/R_{e}$ is taken to be small, with $R_{m}$ large, and a range of initial field strengths $b_{0}$ is considered. Two scaling laws are proposed and confirmed numerically. For initial magnetic fields below the threshold $b_{core}=O(UR_{m}^{-1/3})$, flux expulsion operates despite the Lorentz force, cutting through field lines to result in the formation of a central core of magnetic field. Here $U$ is a velocity scale of the flow and magnetic fields are measured in Alfvén units. For larger initial fields the Lorentz force is dominant and the flow creates Alfvén waves that propagate away. The second threshold is $b_{dynam}=O(UR_{m}^{-3/4})$, below which the field follows the kinematic evolution and decays rapidly. Between these two thresholds the magnetic field is strong enough to suppress differential rotation, leaving a magnetically controlled core spinning in solid body motion, which then decays slowly on a time scale of order $TR_{m}$.


2001 ◽  
Author(s):  
Haim H. Bau

Abstract In this paper, I review some of our work on the use of magneto hydrodynamics (MHD) for pumping, controlling, and stirring fluids in microdevices. In many applications, one operates with liquids that are at least slightly conductive such as biological fluids. By patterning electrodes inside flow conduits and subjecting these electrodes to potential differences, one can induce electric currents in the liquid. In the presence of a magnetic field, a Lorentz force is generated in a direction that is perpendicular to both the magnetic and electric fields. Since one has a great amount of freedom in patterning the electrodes, one can induce forces in various directions so as to generate complex flows including “guided” flows in virtual, wall-less channels. The magnetic flux generators can be either embedded in the device or be external. Despite their unfavorable scaling (the magnitude of the forces is proportional to the fluid volume), MHD offers many advantages such as the flexibility of applying forces in any desired direction and the ability to adjust the magnitude of the forces by adjusting either the electric and/or magnetic fields. We provide examples of (i) MHD pumps; (ii) controlled networks of conduits in which each conduit is equipped with a MHD actuator and by controlling the voltage applied to each actuator, one can direct the liquid to flow in any desired way without a need for valves; and (iii) MHD stirrers including stirrers that exhibit chaotic advection.


2019 ◽  
Vol 115 (8) ◽  
pp. 083702 ◽  
Author(s):  
Xi Zhao ◽  
Lixiang Yang ◽  
Yujie Ding ◽  
Pengju Zhang ◽  
Jing Liu

Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1653
Author(s):  
Huaijiu Deng ◽  
Jian Dong ◽  
Filippo Boi ◽  
Theo Saunders ◽  
Chunfeng Hu ◽  
...  

In the past decade, a renewed interest on electromagnetic processing of materials has motivated several investigations on the interaction between matter, electric and magnetic fields. These effects are primarily reconducted to the Joule heating and very little attention has been dedicated to the magnetic field contributions. The magnetic field generated during electric current-assisted sintering has not been widely investigated. Magnetism could have significant effects on sintering as it generates significant magnetic forces, resulting in inductive electrical loads and preferential heating induced by overlapping magnetic fields (i.e., proximity effect). This work summarizes the magnetic field effects in electric current-assisted processing; it focuses on health and safety issues associated with large currents (up to 0.4 MA); using FEM simulations, it computes the self-generated magnetic field during spark plasma sintering (SPS) to consolidate materials with variable magnetic permeability; and it quantifies the Lorentz force acting at interparticle contact points. The results encourage one to pay more attention to magnetic field-related effects in order to engineer and exploit their potentials.


Author(s):  
Robert E. Newnham

The Lorentz force that a magnetic field exerts on a moving charge carrier is perpendicular to the direction of motion and to the magnetic field. Since both electric and thermal currents are carried by mobile electrons and ions, a wide range of galvanomagnetic and thermomagnetic effects result. The effects that occur in an isotropic polycrystalline metal are illustrated in Fig. 20.1. As to be expected, many more cross-coupled effects occur in less symmetric solids. The galvanomagnetic experiments involve electric field, electric current, and magnetic field as variables. The Hall Effect, transverse magnetoresistance, and longitudinal magnetoresistance all describe the effects of magnetic fields on electrical resistance. Analogous experiments on thermal conductivity are referred to as thermomagnetic effects. In this case the variables are heat flow, temperature gradient, and magnetic field. The Righi–Leduc Effect is the thermal Hall Effect in which magnetic fields deflect heat flow rather than electric current. The transverse thermal magnetoresistance (the Maggi–Righi–Leduc Effect) and the longitudinal thermal magnetoresistance are analogous to the two galvanomagnetic magnetoresistance effects. Additional interaction phenomena related to the thermoelectric and piezoresistance effects will be discussed in the next two chapters. In tensor form Ohm’s Law is . . .Ei = ρijJj , . . . where Ei is electrical field, Jj electric current density, and ρij the electrical resistivity in Ωm. In describing the effect of magnetic field on electrical resistance, we expand the resistivity in a power series in magnetic flux density B. B is used rather than the magnetic field H because the Lorentz force acting on the charge carriers depends on B not H.


2021 ◽  
Vol 926 ◽  
Author(s):  
Jie Zhang ◽  
Ming-Jiu Ni

The motion of a pair of bubbles rising side by side under the influence of external magnetic fields is numerically examined. Through solving the fully three-dimensional Navier–Stokes equations, the results reveal that the bubble interactions are rather sensitive to the field direction and strength. At first, we identify that, in a hydrodynamic flow, whether the two bubbles will bounce or coalesce depends on the developments of the counter-rotating streamwise vortices during the collision. In particular, for an originally bouncing bubble pair, a streamwise magnetic field tends to promote their coalescence by weakening the strengths of the standing streamwise vortices, and such a weakening effect is caused by the asymmetric distribution of the Lorentz force in the presence of another bubble such that a torque is induced to offset the original streamwise vortices. Under a horizontal magnetic field, on the other hand, the influences are highly dependent on the angle between the bubble centroid line and the field: a transverse field or a moderate spanwise field always leads the bubble pair to coalescence while a strong spanwise field has the opposite effect. This anisotropic effect comes from the Lorentz force induced flow diffusion along the magnetic field, which not only produces two pairs of streamwise vortices at the bubble rear, but also homogenizes the pressure along the magnetic lines. As the competition between the two mechanisms varies with the magnetic direction and strength, the interaction between the bubble pair also changes. We show that the external magnetic fields control the bubble interaction through reconstructing the vortex structures, and hence the core mechanisms are identified.


1984 ◽  
Vol 51 (1) ◽  
pp. 13-18 ◽  
Author(s):  
P. R. Hays ◽  
J. S. Walker

Many metallurgical applications of magnetohydrodynamics (MHD) involve open-channel liquid-metal flows with magnetic fields. This paper treats the three-dimensional, variable-depth flow in a rectangular open channel having an electrically insulating bottom and perfectly conducting sides. A steady, uniform magnetic field is applied perpendicular to the channel bottom. Induced magnetic fields and surface tension effects are neglected, while the applied magnetic field is sufficiently strong that inertial effects are negligible everywhere. Viscous effects are confined to boundary layers adjacent to the bottom, sides, and free surface. Solutions are presented for the inviscid core and the boundary layers. The locations of the free surface above the core and above the boundary layers adjacent to the sides are obtained. The side-layer variables are rescaled into universal profile functions which depend on the coordinates in the channel’s cross section and on a parameter related to the local slopes of the bottom and the free surface. The solutions for the side layers in open channels are compared to the side-layer solutions for certain rectangular closed ducts in order to reveal the effects of the free surface. This comparison leads to a qualitative correspondence principle between open-channel and closed-duct side-layer solutions. The similarities and differences between corresponding open-channel and closed-duct side layers are discussed.


Sign in / Sign up

Export Citation Format

Share Document