Functionalization and cancer-targeting design of ruthenium complexes for precise cancer therapy

2019 ◽  
Vol 55 (67) ◽  
pp. 9904-9914 ◽  
Author(s):  
Jinggong Liu ◽  
Haoqiang Lai ◽  
Zushuang Xiong ◽  
Bolai Chen ◽  
Tianfeng Chen

Herein, the functionalized Ruthenium complex applied for bio-imaging, photodynamic/photothermal therapy, precise targeted therapy and theranostics application have been discussed.

Pharmaceutics ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 301 ◽  
Author(s):  
Kim ◽  
Choi ◽  
Choi ◽  
Park ◽  
Ryu

Hyaluronic acid (HA) has been widely investigated in cancer therapy due to its excellent characteristics. HA, which is a linear anionic polymer, has biocompatibility, biodegradability, non-immunogenicity, non-inflammatory, and non-toxicity properties. Various HA nanomedicines (i.e., micelles, nanogels, and nanoparticles) can be prepared easily using assembly and modification of its functional groups such as carboxy, hydroxy and N-acetyl groups. Nanometer-sized HA nanomedicines can selectively deliver drugs or other molecules into tumor sites via their enhanced permeability and retention (EPR) effect. In addition, HA can interact with overexpressed receptors in cancer cells such as cluster determinant 44 (CD44) and receptor for HA-mediated motility (RHAMM) and be degraded by a family of enzymes called hyaluronidase (HAdase) to release drugs or molecules. By interaction with receptors or degradation by enzymes inside cancer cells, HA nanomedicines allow enhanced targeting cancer therapy. In this article, recent studies about HA nanomedicines in drug delivery systems, photothermal therapy, photodynamic therapy, diagnostics (because of the high biocompatibility), colloidal stability, and cancer targeting are reviewed for strategies using micelles, nanogels, and inorganic nanoparticles.


Nanoscale ◽  
2021 ◽  
Author(s):  
Jinsong Xiong ◽  
Qinghuan Bian ◽  
Shuijin Lei ◽  
Yatian Deng ◽  
Kehan Zhao ◽  
...  

Near-infrared (NIR) light induced photothermal cancer therapy using nanomaterials as photothermal agents has attracted considerable research interest over the past few years. As the key factor in the photothermal therapy...


Author(s):  
Gang Wu ◽  
Bao Jiang ◽  
Lin Zhou ◽  
Ao Wang ◽  
Shaohua Wei

Activated carbon nanoparticles (ANs) were synthesized from coconut shell. ANs show peroxidase and photothermal conversion activities, allowing synergistic cancer treatment via chemodynamic therapy (CDT) and photothermal therapy (PTT).


RSC Advances ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 2253-2291
Author(s):  
Amin Shiralizadeh Dezfuli ◽  
Elmira Kohan ◽  
Sepand Tehrani Fateh ◽  
Neda Alimirzaei ◽  
Hamidreza Arzaghi ◽  
...  

Organic dots is a term used to represent materials including graphene quantum dots and carbon quantum dots because they rely on the presence of other atoms (O, H, and N) for their photoluminescence or fluorescence properties. Cargo delivery, bio-imaging, photodynamic therapy and photothermal therapy are major biomedical applications of organic dots.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Songtao Zhang ◽  
Longhai Jin ◽  
Jianhua Liu ◽  
Yang Liu ◽  
Tianqi Zhang ◽  
...  

AbstractIn spite of the tumor microenvironments responsive cancer therapy based on Fenton reaction (i.e., chemodynamic therapy, CDT) has been attracted more attentions in recent years, the limited Fenton reaction efficiency is the important obstacle to further application in clinic. Herein, we synthesized novel FeO/MoS2 nanocomposites modified by bovine serum albumin (FeO/MoS2-BSA) with boosted Fenton reaction efficiency by the synergistic effect of co-catalyze and photothermal effect of MoS2 nanosheets triggered by the second near-infrared (NIR II) light. In the tumor microenvironments, the MoS2 nanosheets not only can accelerate the conversion of Fe3+ ions to Fe2+ ions by Mo4+ ions on their surface to improve Fenton reaction efficiency, but also endow FeO/MoS2-BSA with good photothermal performances for photothermal-enhanced CDT and photothermal therapy (PTT). Consequently, benefiting from the synergetic-enhanced CDT/PTT, the tumors are eradicated completely in vivo. This work provides innovative synergistic strategy for constructing nanocomposites for highly efficient CDT.


Author(s):  
Dar-Bin Shieh ◽  
An An Ding ◽  
Ya-Na Wu ◽  
Ying-Yi Chen ◽  
Churng-Ren Chris Wang ◽  
...  

2015 ◽  
Vol 51 (13) ◽  
pp. 2637-2640 ◽  
Author(s):  
Zhiqin Deng ◽  
Lianling Yu ◽  
Wenqiang Cao ◽  
Wenjie Zheng ◽  
Tianfeng Chen

We have described the rational design of selenium-containing ruthenium complexes and their use as cancer radiosensitizers through regulating ROS-mediated pathways.


Author(s):  
Abdorreza Asrar ◽  
Zahra Sobhani ◽  
Mohammad Ali Behnam

Purpose: Photothermal therapy is a procedure that converts laser beam energy to heat so can disturb tumor cells. Carbon nanotubes (CNTs) have unique properties in absorption optical energy and could change optical power into heat in photothermal therapy procedures. Additionally, titanium dioxide (TiO2) NPs have a unique feature in absorbing and scattering light. Therefore, these mentioned NPs could play a synergistic role in the photothermal therapy method. Methods: CNTs and TiO2 NPs were injected into the melanoma tumor sites of cancerous mice. Then sites were excited using the laser beam (λ= 808nm, P= 2W, and I= 4W/cm2). Injected NPs caused hyperthermia in solid tumors. Tumor size assay, statistical analysis, and histopathological study of the treated cases were performed to assess the role of mentioned NPs in photothermal therapy of murine melanoma cancer. Results: The results showed that CNTs performed better than TiO2 NPs in destroying murine melanoma cancer cells in animals. Conclusion: The present study compared the photothermal activity of excited CNTs and TiO2 NPs in cancer therapy at the near-infrared spectrum of light. Tumors were destroyed selectively because of their weakened heat resistance versus normal tissue. Photothermal therapy of malignant melanoma through CNTs caused remarkable necrosis into the tumor tissues versus TiO2 NPs.


Sign in / Sign up

Export Citation Format

Share Document