Ultralow cross-plane lattice thermal conductivity caused by Bi–O/Bi–O interfaces in natural superlattice-like single crystals

CrystEngComm ◽  
2019 ◽  
Vol 21 (41) ◽  
pp. 6261-6268
Author(s):  
Chen Di ◽  
Jia-Hui Pan ◽  
Song-Tao Dong ◽  
Yang-Yang Lv ◽  
Xue-Jun Yan ◽  
...  

Revealing the impact of Bi–O/Bi–O interfaces with van der Waals interactions on the formation of ultralow cross-plane lattice thermal conductivity.

2021 ◽  
Vol 33 (4) ◽  
pp. 1140-1148
Author(s):  
Hao Zhu ◽  
Chenchen Zhao ◽  
Pengfei Nan ◽  
Xiao-ming Jiang ◽  
Jiyin Zhao ◽  
...  

2020 ◽  
Vol 22 (21) ◽  
pp. 12273-12280 ◽  
Author(s):  
Brahim Marfoua ◽  
Young Soo Lim ◽  
Jisang Hong

The bilayer α-GeTe displayed an exceptionally low lattice thermal conductivity never reported in the atomically thin 2D materials.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Md. Sherajul Islam ◽  
Imon Mia ◽  
Shihab Ahammed ◽  
Catherine Stampfl ◽  
Jeongwon Park

AbstractGraphene based van der Waals heterostructures (vdWHs) have gained substantial interest recently due to their unique electrical and optical characteristics as well as unprecedented opportunities to explore new physics and revolutionary design of nanodevices. However, the heat conduction performance of these vdWHs holds a crucial role in deciding their functional efficiency. In-plane and out-of-plane thermal conduction phenomena in graphene/2D-SiC vdWHs were studied using reverse non-equilibrium molecular dynamics simulations and the transient pump-probe technique, respectively. At room temperature, we determined an in-plane thermal conductivity of ~ 1452 W/m-K for an infinite length graphene/2D-SiC vdWH, which is superior to any graphene based vdWHs reported yet. The out-of-plane thermal resistance of graphene → 2D-SiC and 2D-SiC → graphene was estimated to be 2.71 × 10−7 km2/W and 2.65 × 10−7 km2/W, respectively, implying the absence of the thermal rectification effect in the heterobilayer. The phonon-mediated both in-plane and out-of-plane heat transfer is clarified for this prospective heterobilayer. This study furthermore explored the impact of various interatomic potentials on the thermal conductivity of the heterobilayer. These findings are useful in explaining the heat conduction at the interfaces in graphene/2D-SiC vdWH and may provide a guideline for efficient design and regulation of their thermal characteristics.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Ji Qi ◽  
Baojuan Dong ◽  
Zhe Zhang ◽  
Zhao Zhang ◽  
Yanna Chen ◽  
...  

Abstract A solid with larger sound speeds usually exhibits higher lattice thermal conductivity. Here, we report an exception that CuP2 has a quite large mean sound speed of 4155 m s−1, comparable to GaAs, but single crystals show very low lattice thermal conductivity of about 4 W m−1 K−1 at room temperature, one order of magnitude smaller than GaAs. To understand such a puzzling thermal transport behavior, we have thoroughly investigated the atomic structures and lattice dynamics by combining neutron scattering techniques with first-principles simulations. This compound crystallizes in a layered structure where Cu atoms forming dimers are sandwiched in between P atomic networks. In this work, we reveal that Cu atomic dimers vibrate as a rattling mode with frequency around 11 meV, which is manifested to be remarkably anharmonic and strongly scatters acoustic phonons to achieve the low lattice thermal conductivity.


2015 ◽  
Vol 117 (1) ◽  
pp. 015103 ◽  
Author(s):  
Kyeong Hyun Park ◽  
Mohamed Mohamed ◽  
Zlatan Aksamija ◽  
Umberto Ravaioli

MRS Advances ◽  
2018 ◽  
Vol 3 (6-7) ◽  
pp. 333-338
Author(s):  
Hiroyuki Kumazoe ◽  
Aravind Krishnamoorthy ◽  
Lindsay Bassman ◽  
Fuyuki Shimojo ◽  
Rajiv K. Kalia ◽  
...  

ABSTRACTUltrafast atomic dynamics induced by electronic and optical excitation opens new possibilities for functionalization of two-dimensional and layered materials. Understanding the impact of perturbed valence band populations on both the strong covalent bonds and relatively weaker van der Waals interactions is important for these anisotropic systems. While the dynamics of strong covalent bonds has been explored both experimentally and theoretically, relatively fewer studies have focused on the impact of excitation on weak bonds like van der Waals and hydrogen-bond interactions. We perform non-adiabatic quantum molecular dynamics (NAQMD) simulations to study photo-induced dynamics in MoS2 bilayer. We observe photo-induced non-thermal contraction of the interlayer distance in the MoS2 bilayer within 100 femtoseconds after photoexcitation. We identify a large photo-induced redistribution of electronic charge density, whose Coulombic interactions could explain the observed inter-layer contraction.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aravind Krishnamoorthy ◽  
Nitish Baradwaj ◽  
Aiichiro Nakano ◽  
Rajiv K. Kalia ◽  
Priya Vashishta

AbstractEngineering thermal transport in two dimensional materials, alloys and heterostructures is critical for the design of next-generation flexible optoelectronic and energy harvesting devices. Direct experimental characterization of lattice thermal conductivity in these ultra-thin systems is challenging and the impact of dopant atoms and hetero-phase interfaces, introduced unintentionally during synthesis or as part of deliberate material design, on thermal transport properties is not understood. Here, we use non-equilibrium molecular dynamics simulations to calculate lattice thermal conductivity of $${\mathrm {(Mo|W)Se_2}}$$ ( Mo | W ) Se 2 monolayer crystals including $${\mathrm {Mo}}_{1-x}{\mathrm {W}}_x{\mathrm {Se_2}}$$ Mo 1 - x W x Se 2 alloys with substitutional point defects, periodic $${\mathrm {MoSe_2}|\mathrm {WSe_2}}$$ MoSe 2 | WSe 2 heterostructures with characteristic length scales and scale-free fractal $${\mathrm {MoSe_2}}|{\mathrm {WSe_2}}$$ MoSe 2 | WSe 2 heterostructures. Each of these features has a distinct effect on phonon propagation in the crystal, which can be used to design fractal and periodic alloy structures with highly tunable thermal conductivities. This control over lattice thermal conductivity will enable applications ranging from thermal barriers to thermoelectrics.


Sign in / Sign up

Export Citation Format

Share Document