scholarly journals Using photoelectron spectroscopy to observe oxygen spillover to zirconia

2019 ◽  
Vol 21 (32) ◽  
pp. 17613-17620 ◽  
Author(s):  
Peter Lackner ◽  
Zhiyu Zou ◽  
Sabrina Mayr ◽  
Ulrike Diebold ◽  
Michael Schmid

Oxygen vacancies in five-monolayer-thick tetragonal ZrO2 films can cause core level binding energies up to 1.8 eV higher than in the (near-stoichiometric) monoclinic phase. The vacancies can be healed by oxygen spillover from a metal catalyst.


2018 ◽  
Vol 20 (13) ◽  
pp. 8403-8410 ◽  
Author(s):  
Francesc Viñes ◽  
Carmen Sousa ◽  
Francesc Illas

Core level binding energies, measured by X-ray photoelectron spectroscopy providing unique information regarding the chemical environment of atoms in a system, can be estimated by a diversity of state-of-the-art accurate methods here detailed.



1987 ◽  
Vol 41 (6) ◽  
pp. 994-1000 ◽  
Author(s):  
V. Y. Young ◽  
F. C. Chang ◽  
K. L. Cheng

X-ray photoelectron spectroscopy has been used to determine the oxidation state of nickel in the oxidized nickel (II) dimethylglyoxime complex. Core level binding energies for the Ni(2p), N(1s), and O(1s) levels; the presence or absence of shake-up satellites on the Ni(2p) levels; and the analysis of intensity data are consistent only with an assignment of +3. Structures consistent with the data are proposed for both the solid-and the solution-phase complexes.



1986 ◽  
Vol 82 ◽  
Author(s):  
H. E. Rhodes ◽  
G. Apai

ABSTRACTWe have studied the atomic states of arsenic (As) and phosphorus (P) in SiO2 using X-ray photoelectron spectroscopy (XPS). Silicon dioxide implanted with As or P shows multiple XPS core level peaks corresponding to the impurity atoms located in two distinct atomic sites. The binding energies of the two arsenic 3d core levels occur at 45.8 and 42.3 eV and the two phosphorus 2p core levels occur at 134.7 and 130.3 eV. When the implanted oxides are annealed in an oxygen ambient between 900°C and 950°C, only the highbinding- energy peaks of P and As are observed. This identifies the highbinding- energy core level peaks as being associated with the impurity (P or As) on silicon sites. Annealing in nitrogen at 950° C results in an increase in the low-binding-energy signal. The low-binding-energy peaks are associated with the impurity (P or As) bonded to silicon neighbors. The relative amounts of dopants in silicon and oxygen sites depend on ambient purity and processing details. Reference to previous work shows that the presence of As or P on silicon sites in SiO2 corresponds to a fast diffusing state whereas As or P on oxygen sites corresponds to a slow diffusing state [1].



2002 ◽  
Vol 09 (02) ◽  
pp. 1235-1239 ◽  
Author(s):  
KAZUYUKI SAKAMOTO ◽  
H. M. ZHANG ◽  
ROGER I. G. UHRBERG

The structure of the K/Si (111)-(3 × 1) surface was studied by high-resolution core-level photoelectron spectroscopy. Five surface components were observed in the Si 2p core-level spectra. Compared to the bulk component, three components are shifted to lower and two to higher binding energies. The two components with the lowest binding energies are assigned to the top-layer Si atoms bonded to the K atoms with different configurations. The component with highest binding energy has a contribution from the π-bonded Si atoms of the top layer. The two other components originate from the Si atoms of the second and third layers.



Author(s):  
S.M. Widstrand ◽  
K.O. Magnusson ◽  
L.S.O. Johansson ◽  
E. Moons ◽  
M. Gurnett ◽  
...  

We report on a high-resolution x-ray photoelectron spectroscopy (HRXPS) study using synchrotron radiation, for the identification of the core level binding energies of Ga 3d and N 1s, from a stoichiometric Ga-polar GaN(0001)-1×1 sample.Three surface shifted components were found on the stoichiometric surface for the Ga 3d feature. The first surface shifted component has a higher binding energy of 0.85 eV, and is interpreted as surface Ga with one of the N bonds replaced by an empty dangling bond. This structure is belonging to the stoichiometric clean and ordered Ga-polar GaN(0001)-1×1 surface. The second, with a binding energy relative the bulk of −0.76 eV, is interpreted as Ga with one of the bonds to a Ga atom, which indicates a slight excess of Ga on the surface. The third surface shifted component is shifted by 2.01 eV and is related to gallium oxide in different configurations.The N 1s feature is complex with five surface shifted components relative the bulk were found. Two components with binding energy shifts of −0.54 eV and 0.47 eV are interpreted as surface shifted core levels from the stoichiometric, clean Ga-polar GaN(0001)-1×1 surface.We also analysed the Ga 3d spectrum after deposition of 1.5 ML of Ga on a stoichiometric surface. The surface shift for the Ga 3d5/2 component from the Ga overlayer is −1.74 eV relative the bulk GaN.The C 1s and O 1s core levels from remaining surface contamination have also been line shaped analysed and show complex structures.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Artur Born ◽  
Fredrik O. L. Johansson ◽  
Torsten Leitner ◽  
Danilo Kühn ◽  
Andreas Lindblad ◽  
...  

AbstractThe chemical shift of core level binding energies makes electron spectroscopy for chemical analysis (ESCA) a workhorse analytical tool for science and industry. For some elements, close lying and overlapping spectral features within the natural life time broadening restrict applications. We establish how the core level binding energy chemical shift can be picked up experimentally by the additional selectivity through Auger electron photoelectron coincidence spectroscopy (APECS). Coincident measurement of Ni 3p photoemission with different MVV Auger regions from specific decay channels, narrows the 3p core-levels to a width of 1.2 eV, resolves the spin–orbit splitting of 1.6 eV and determines the chemical shift of Ni 3p levels of a Ni(111) single crystal and its oxidized surface layer to 0.6 eV.



2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yanfei Zhao ◽  
Hongwei Gao ◽  
Rong Huang ◽  
Zengli Huang ◽  
Fangsen Li ◽  
...  

AbstractWe present a systematic study of surface band bending in Ga-polar n-GaN with different Si doping concentrations by angular dependent X-ray photoelectron spectroscopy (ADXPS). The binding energies of Ga 3d and N 1 s core levels in n-GaN films increase with increasing the emission angle, i. e., the probing depth, suggesting an upward surface band bending. By fitting the Ga 3d core level spectra at different emission angles and considering the integrated effect of electrostatic potential, the core level energy at the topmost surface layer is well corrected, therefore, the surface band bending is precisely evaluated. For moderately doped GaN, the electrostatic potential can be reflected by the simply linear potential approximation. However, for highly doped GaN samples, in which the photoelectron depth is comparable to the width of the space charge region, quadratic depletion approximation was used for the electrostatic potential to better understand the surface band bending effect. Our work improves the knowledge of surface band bending determination by ADXPS and also paves the way for studying the band bending effect in the interface of GaN based heterostructures.



Sign in / Sign up

Export Citation Format

Share Document