Design of Polymeric Materials for Triboelectric Nanogenerators (TENGs)

2021 ◽  
Vol 30 (1/2) ◽  
pp. 12-19
Author(s):  
Woongbi CHO ◽  
Jeong Jae WIE

Triboelectric nanogenerators (TENGs) are eco-friendly energy-harvesting systems that produce electrical energy from disordered mechanical energy. To enhance the triboelectric performances of TENGs, many researchers have conducted in-depth studies of the polymer materials utilized in TENGs, so numerous studies have been reported on the relationship between their material properties and their energy-harvesting capabilities. Triboelectric performance depends on the electrical properties of the materials used, such as their electron affinities and dielectric constants. Representative examples of positive and negative tribomaterials include PA6, PEO, PVDF, and fluorinated sulfur copolymers, respectively. This article introduces the relationship among the compositions, structures, triboelectric performances of the polymer materials, and composites used in TENGs and summarizes the representative polymer materials applied in the latest TENGs.

Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4980
Author(s):  
Tiago Rodrigues-Marinho ◽  
Nelson Castro ◽  
Vitor Correia ◽  
Pedro Costa ◽  
Senentxu Lanceros-Méndez

Energy harvesting systems for low-power devices are increasingly being a requirement within the context of the Internet of Things and, in particular, for self-powered sensors in remote or inaccessible locations. Triboelectric nanogenerators are a suitable approach for harvesting environmental mechanical energy otherwise wasted in nature. This work reports on the evaluation of the output power of different polymer and polymer composites, by using the triboelectric contact-separation systems (10 N of force followed by 5 cm of separation per cycle). Different materials were used as positive (Mica, polyamide (PA66) and styrene/ethylene-butadiene/styrene (SEBS)) and negative (polyvinylidene fluoride (PVDF), polyurethane (PU), polypropylene (PP) and Kapton) charge materials. The obtained output power ranges from 0.2 to 5.9 mW, depending on the pair of materials, for an active area of 46.4 cm2. The highest response was obtained for Mica with PVDF composites with 30 wt.% of barium titanate (BT) and PA66 with PU pairs. A simple application has been developed based on vertical contact-separation mode, able to power up light emission diodes (LEDs) with around 30 cycles to charge a capacitor. Further, the capacitor can be charged in one triboelectric cycle if an area of 0.14 m2 is used.


2019 ◽  
Vol 12 (8) ◽  
pp. 2417-2421 ◽  
Author(s):  
Andris Šutka ◽  
Kaspars Mālnieks ◽  
Linards Lapčinskis ◽  
Paula Kaufelde ◽  
Artis Linarts ◽  
...  

The present study reports the origin of surface charge on the polymer surface upon triboelectrification and is a step forward towards the development of next generation of mechanical energy harvesting systems.


Author(s):  
D. Dane Quinn ◽  
Angela L. Triplett ◽  
Lawrence A. Bergman ◽  
Alexander F. Vakakis

Self-contained long-lasting energy sources are rapidly increasing in importance as portable electronics and inaccessible devices such as wireless sensors are finding wider and more varied applications. However, in many circumstances replacing power supplies, such as conventional batteries, becomes impractical and the development of a self-renewing source of energy is paramount to the continued development of such devices. The ability to convert ambient mechanical energy to usable electrical energy fills these requirements and one aspect of current research seeks to increase the efficiency and performance of these energy harvesting systems. However, to achieve acceptable performance conventional vibration-based energy harvesting devices based on linear elements must be specifically tuned to match environmental conditions such as the frequency and amplitude of the external vibration. As the environmental conditions vary under ambient conditions the performance of these linear devices is dramatically decreased. The strategy to efficiently harvest energy from low-level, intermittent ambient vibration, proposed herein, relies on the unique properties of a particular class of strongly nonlinear vibrating systems that are referred to as “essentially” nonlinear.


2018 ◽  
Vol 211 ◽  
pp. 05003 ◽  
Author(s):  
Zdenek Hadas ◽  
Jan Smilek ◽  
Ondrej Rubes

This paper deals with an energy harvesting review and analysis of an ambient mechanical energy on a trackside during a passing of a train. Trains provide very high level of vibration and deformation which could be converted into useful electricity. Due to maintenance and safety reasons a rail trackside includes sensing systems and number of sensor nodes is increased for modern transportation. Recent development of modern communication and ultra-low power electronics allows to use energy harvesting systems as autonomous source of electrical energy for these trackside objects. Main aim of this paper is model-based design of proposed vibration energy harvesting systems inside sleeper and predict harvested power during the train passing. Measurements of passing train is used as input for simulation models and harvested power is calculated. This simulation of proposed energy harvesting device is very useful for future design.


2021 ◽  
Vol 34 (2) ◽  
pp. 157-172
Author(s):  
Deepak Anand ◽  
Singh Sambyal ◽  
Rakesh Vaid

The demand for energy is increasing tremendously with modernization of the technology and requires new sources of renewable energy. The triboelectric nanogenerators (TENG) are capable of harvesting ambient energy and converting it into electricity with the process of triboelectrification and electrostatic-induction. TENG can convert mechanical energy available in the form of vibrations, rotation, wind and human motions etc., into electrical energy there by developing a great scope for scavenging large scale energy. In this review paper, we have discussed various modes of operation of TENG along with the various factors contributing towards its efficiency and applications in wearable electronics.


2018 ◽  
Vol 29 (18) ◽  
pp. 3572-3581
Author(s):  
Suihan Liu ◽  
Ali Imani Azad ◽  
Rigoberto Burgueño

Piezoelectric energy harvesting from ambient vibrations is well studied, but harvesting from quasi-static responses is not yet fully explored. The lack of attention is because quasi-static actions are much slower than the resonance frequency of piezoelectric oscillators to achieve optimal outputs; however, they can be a common mechanical energy resource: from large civil structure deformations to biomechanical motions. The recent advances in bio-micro-electro-mechanical systems and wireless sensor technologies are motivating the study of piezoelectric energy harvesting from quasi-static conditions for low-power budget devices. This article presents a new approach of using quasi-static deformations to generate electrical power through an axially compressed bilaterally constrained strip with an attached piezoelectric layer. A theoretical model was developed to predict the strain distribution of the strip’s buckled configuration for calculating the electrical energy generation. Results from an experimental investigation and finite element simulations are in good agreement with the theoretical study. Test results from a prototyped device showed that a peak output power of 1.33 μW/cm2 was generated, which can adequately provide power supply for low-power budget devices. And a parametric study was also conducted to provide design guidance on selecting the dimensions of a device based on the external embedding structure.


2013 ◽  
Vol 8 (1) ◽  
pp. 155892501300800
Author(s):  
François M. Guillot ◽  
Haskell W. Beckham ◽  
Johannes Leisen

In the past few years, the growing need for alternative power sources has generated considerable interest in the field of energy harvesting. A particularly exciting possibility within that field is the development of fabrics capable of harnessing mechanical energy and delivering electrical power to sensors and wearable devices. This study presents an evaluation of the electromechanical performance of hollow lead zirconate titanate (PZT) fibers as the basis for the construction of such fabrics. The fibers feature individual polymer claddings surrounding electrodes directly deposited onto both inside and outside ceramic surfaces. This configuration optimizes the amount of electrical energy available by placing the electrodes in direct contact with the surface of the material and by maximizing the active piezoelectric volume. Hollow fibers were electroded, encapsulated in a polymer cladding, poled and characterized in terms of their electromechanical properties. They were then glued to a vibrating cantilever beam equipped with a strain gauge, and their energy harvesting performance was measured. It was found that the fibers generated twice as much energy density as commercial state-of-the-art flexible composite sensors. Finally, the influence of the polymer cladding on the strain transmission to the fiber was evaluated. These fibers have the potential to be woven into fabrics that could harvest mechanical energy from the environment and could eventually be integrated into clothing.


Nano Energy ◽  
2018 ◽  
Vol 44 ◽  
pp. 279-287 ◽  
Author(s):  
Chaoxing Wu ◽  
Tae Whan Kima ◽  
Sihyun Sung ◽  
Jae Hyeon Park ◽  
Fushan Li

Sign in / Sign up

Export Citation Format

Share Document