scholarly journals Antiscattering X-ray fluorescence analysis for large-area samples

2019 ◽  
Vol 34 (11) ◽  
pp. 2273-2279 ◽  
Author(s):  
Wenyang Zhao ◽  
Keiichi Hirano ◽  
Kenji Sakurai
Keyword(s):  
X Rays ◽  
X Ray ◽  

The scattering background in large-area X-ray fluorescence analysis (more than one square centimeter) has been greatly reduced by using highly polarized X-rays and by inserting a collimator plate between the sample and the detector.

2020 ◽  
Vol 495 (3) ◽  
pp. 2664-2672 ◽  
Author(s):  
Amar Deo Chandra ◽  
Jayashree Roy ◽  
P C Agrawal ◽  
Manojendu Choudhury

ABSTRACT We present the timing and spectral studies of RX J0209.6–7427 during its rare 2019 outburst using observations with the Soft X-ray Telescope (SXT) and Large Area X-ray Proportional Counter (LAXPC) instruments on the AstroSat satellite. Pulsations having a periodicity of 9.29 s were detected for the first time by the NICER mission in the 0.2–10 keV energy band and, as reported here, by AstroSat over a broad energy band covering 0.3–80 keV. The pulsar exhibits a rapid spin-up during the outburst. Energy resolved folded pulse profiles are generated in several energy bands in 3–80 keV. To the best of our knowledge this is the first report of the timing and spectral characteristics of this Be binary pulsar in hard X-rays. There is suggestion of evolution of the pulse profile with energy. The energy spectrum of the pulsar is determined and from the best-fitting spectral values, the X-ray luminosity of RX J0209.6−7427 is inferred to be 1.6 × 1039 erg s−1. Our timing and spectral studies suggest that this source has features of an ultraluminous X-ray pulsar in the Magellanic Bridge. Details of the results are presented and discussed in terms of the current ideas.


2004 ◽  
Author(s):  
Josef Kouba ◽  
Zhong-Geng Ling ◽  
Lin Wang ◽  
Yohannes M. Desta ◽  
Jost Goettert
Keyword(s):  
X Rays ◽  
X Ray ◽  

Author(s):  
Daiji Noda ◽  
Naoki Takahashi ◽  
Atsushi Tokuoka ◽  
Megumi Katori ◽  
Tadashi Hattori

X-ray radiographic imaging techniques have been applied in many fields. Previously we proposed a method for X-ray phase imaging using X-ray Talbot interferometry which requires the use of X-ray gratings. In this work, we fabricated the X-ray gratings needed for X-ray Talbot interferometry using an X-ray lithography technique. For X-ray lithography the accuracy of the fabricated structure depends largely on the accuracy of the X-ray mask. Conventionally a resin material is used for the support membrane for large area X-ray masks. However, resin membranes have the disadvantage that they can sag after several cycles of X-ray exposure due to the heat generated by the X-rays. For our new proposal we used thin carbon wafers for the membrane material because carbon has an extremely small thermal expansion coefficient. This new type of X-ray mask is very easy to process, and it is expected that it will lead to more precise X-ray masks. We fabricated carbon membrane X-ray masks on 6 inch wafers with a 1:1 line-to-space ratio and a pitch of 5.3 μm, covering a large effective area of 100 × 100 mm2.


Author(s):  
D. A. Carpenter ◽  
M. A. Taylor

The development of intense sources of x rays has led to renewed interest in the use of microbeams of x rays in x-ray fluorescence analysis. Sparks pointed out that the use of x rays as a probe offered the advantages of high sensitivity, low detection limits, low beam damage, and large penetration depths with minimal specimen preparation or perturbation. In addition, the option of air operation provided special advantages for examination of hydrated systems or for nondestructive microanalysis of large specimens.The disadvantages of synchrotron sources prompted the development of laboratory-based instrumentation with various schemes to maximize the beam flux while maintaining small point-to-point resolution. Nichols and Ryon developed a microprobe using a rotating anode source and a modified microdiffractometer. Cross and Wherry showed that by close-coupling the x-ray source, specimen, and detector, good intensities could be obtained for beam sizes between 30 and 100μm. More importantly, both groups combined specimen scanning with modern imaging techniques for rapid element mapping.


Author(s):  
D. A. Carpenter ◽  
Ning Gao ◽  
G. J. Havrilla

A monolithic, polycapillary, x-ray optic was adapted to a laboratory-based x-ray microprobe to evaluate the potential of the optic for x-ray micro fluorescence analysis. The polycapillary was capable of collecting x-rays over a 6 degree angle from a point source and focusing them to a spot approximately 40 µm diameter. The high intensities expected from this capillary should be useful for determining and mapping minor to trace elements in materials. Fig. 1 shows a sketch of the capillary with important dimensions.The microprobe had previously been used with straight and with tapered monocapillaries. Alignment of the monocapillaries with the focal spot was accomplished by electromagnetically scanning the focal spot over the beveled anode. With the polycapillary it was also necessary to manually adjust the distance between the focal spot and the polycapillary.The focal distance and focal spot diameter of the polycapillary were determined from a series of edge scans.


1988 ◽  
Vol 32 ◽  
pp. 105-114 ◽  
Author(s):  
H. Schwenke ◽  
W. Berneike ◽  
J. Knoth ◽  
U. Weisbrod

AbstractThe total reflection of X-rays is mainly determined by three parameters , that is the orltical angle, the reflectivity and the penetration depth. For X-ray fluorescence analysis the respective characteristic features can be exploited in two rather different fields of application. In the analysis of trace elements in samples placed as thin films on optical flats, detection limits as low as 2 pg or 0.05 ppb, respectively, have been obtained. In addition, a penetration depth in the nanometer regime renders Total Reflection XRF an inherently sensitive method for the elemental analysis of surfaces. This paper outlines the main physical and constructional parameters for instrumental design and quantitation in both branches of TXRF.


2011 ◽  
Author(s):  
T. He ◽  
R. Durst ◽  
B. L. Becker ◽  
J. Kaercher ◽  
G. Wachter
Keyword(s):  
X Ray ◽  

2005 ◽  
Vol 20 (2) ◽  
pp. 183-183
Author(s):  
Y. Kataoka ◽  
N. Kawahara ◽  
S. Hara ◽  
Y. Yamada ◽  
T. Matsuo ◽  
...  

1971 ◽  
Vol 15 ◽  
pp. 164-175 ◽  
Author(s):  
Robert D. Giauque ◽  
Joseph M. Jaklevic

An x-ray fluorescence analysis method applicable to the case of fluorescent spectra excited with monoenergetic x-rays has been developed. The technique employs a minimum number of calibration steps using single element thin film standards and depends upon theoretical cross sections and fluorescent yield data to interpolate from element to element. The samples are treated as thin films and corrections for absorption effects are easily determined- Enhancement effects, if not negligible, are minimized by sample dilution techniques or by selective excitation.


Sign in / Sign up

Export Citation Format

Share Document