A colorless, transparent and self-healing polyurethane elastomer modulated by dynamic disulfide and hydrogen bonds

2020 ◽  
Vol 44 (15) ◽  
pp. 5746-5754 ◽  
Author(s):  
Xue Wang ◽  
Huijuan Zhang ◽  
Biao Yang ◽  
Liguo Wang ◽  
Hui Sun

A self-healing PU elastomer modulated by disulfide and hydrogen bonding with high transparency of 97% was reported.

2020 ◽  
Vol 22 (31) ◽  
pp. 17620-17631
Author(s):  
Xianling Chen ◽  
Jing Zhu ◽  
Yanlong Luo ◽  
Jun Chen ◽  
Xiaofeng Ma ◽  
...  

The changes in the type and number of hydrogen bonds as well as the microscopic behavior of molecular diffusion in the self-healing process of polyurethane are revealed.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Youngho Eom ◽  
Seon-Mi Kim ◽  
Minkyung Lee ◽  
Hyeonyeol Jeon ◽  
Jaeduk Park ◽  
...  

AbstractSelf-repairable materials strive to emulate curable and resilient biological tissue; however, their performance is currently insufficient for commercialization purposes because mending and toughening are mutually exclusive. Herein, we report a carbonate-type thermoplastic polyurethane elastomer that self-heals at 35 °C and exhibits a tensile strength of 43 MPa; this elastomer is as strong as the soles used in footwear. Distinctively, it has abundant carbonyl groups in soft-segments and is fully amorphous with negligible phase separation due to poor hard-segment stacking. It operates in dual mechano-responsive mode through a reversible disorder-to-order transition of its hydrogen-bonding array; it heals when static and toughens when dynamic. In static mode, non-crystalline hard segments promote the dynamic exchange of disordered carbonyl hydrogen-bonds for self-healing. The amorphous phase forms stiff crystals when stretched through a transition that orders inter-chain hydrogen bonding. The phase and strain fully return to the pre-stressed state after release to repeat the healing process.


Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 110
Author(s):  
Yaoke Ding ◽  
Jincheng Wang ◽  
Shiqiang Song

Supramolecular elastomers based on quaternary hydrogen bonding of ureido-pyrimidinone (UPy) groups own special properties such as reversibility, self-healing, and good processability, which can be used in many special fields. In this paper, a novel type of linear polyisoprene supramolecular elastomer (LPSE) was prepared via anionic polymerization by deliberately introducing hydroxyl, isocyanate, and UPy groups into the ends. The formation of supramolecular structure showed significant effects on the microphase structures of LPSE, which was characterized by Fourier-transform infrared spectroscopy (FTIR), gel permeation chromatography (GPC), hydrogen nuclear magnetic resonance (1H-NMR), and dynamic mechanical analysis (DMA). Results showed that the introduction of UPy groups played a certain role in the improvement of the thermal stability, toughness, and tensile strength of the elastomer. Moreover, from self-healing tests, the hydrogen bonds of UPy showed dynamic characteristics which were different from covalent sacrificial bonds and exhibited the reassociation phenomenon. This study can not only extend our understanding of the toughening effect of strong hydrogen bonds, but also help us to rationally design new and tough elastomers.


2015 ◽  
Vol 3 (33) ◽  
pp. 8526-8534 ◽  
Author(s):  
Miao Yan ◽  
Jun Tang ◽  
He-Lou Xie ◽  
Bin Ni ◽  
Hai-Liang Zhang ◽  
...  

Self-healing liquid crystalline elastomers were fabricated by hydrogen-bonding and the hydrogen bonds in this system played an important role both in self-healing property and the liquid crystalline phase behavior.


2021 ◽  
Vol 290 ◽  
pp. 01037
Author(s):  
Guangpu Zhang ◽  
Zhe Sun ◽  
Miaomiao Li

The microcrack of materials was inevitable in the process of transportation, storage and utilization, which may cause functional failure and resources waste. Inspired by nature, self-healing polymers have attracted significant attention owing to widespread applications in wearable electronics, cartilage replacement, coatings and elastomer. Compared with extrinsic healing, intrinsically healable polymers offer multiple self-healing by supramolecular reversible interactions, such as host-guest interactions, π-π stacking, ionic interactions and hydrogen-bonding. Self-healing polymers based on quadruple hydrogen bonds have been extensively investigated due to its high thermodynamic stability and rapid kinetic reversibility, and have been well developed for the past two decades. In this paper, the strategies and designs of self-repairing polymers based on quadruple hydrogen bond were classified and summarized, including main-chain self-healing polymers, side-chain self-healing polymers and supramolecular self-healing polymers. It is expected that quadruple hydrogen bonding can be construct more robust, highly tough, multi-stimuli-responsive, and fast self-healing supramolecular polymer, and is potential to be applied to numerous civilian and military fields in the future.


2020 ◽  
Author(s):  
Youngho Eom ◽  
Seon-Mi Kim ◽  
Minkyung Lee ◽  
Hyeonyeol Jeon ◽  
Sung Yeon Hwang ◽  
...  

Abstract Self-repairable materials strive to emulate curable and resilient biological tissue; however, their performance is currently insufficient for commercialization purposes because mending and toughening are mutually exclusive. Here, we report a carbonate-type thermoplastic polyurethane elastomer that self-heals at 35 °C and is as strong as footwear elastomers. This elastomer exhibits the highest tensile strength to date (43 MPa). Distinctively, it has abundant carbonyl groups in soft-segments and is fully amorphous with negligible phase separation due to poor hard-segment stacking. It operates in dual mechano-responsive mode through a reversible disorder-to-order transition of its hydrogen-bonding array; it heals when static and toughens when dynamic. In static mode, non-crystalline hard segments promote dynamic exchange of disordered carbonyl hydrogen-bonds for self-healing. The amorphous phase forms stiff crystals when stretched through a transition that orders inter-chain hydrogen bonding. The phase and strain fully return to the pre-stressed state after release to repeat healing process.


2021 ◽  
Vol 22 (10) ◽  
pp. 5380
Author(s):  
Boris A. Kolesov

The work outlines general ideas on how the frequency and the intensity of proton vibrations of X–H×××Y hydrogen bonding are formed as the bond evolves from weak to maximally strong bonding. For this purpose, the Raman spectra of different chemical compounds with moderate, strong, and extremely strong hydrogen bonds were obtained in the temperature region of 5 K–300 K. The dependence of the proton vibrational frequency is schematically presented as a function of the rigidity of O-H×××O bonding. The problems of proton dynamics on tautomeric O–H···O bonds are considered. A brief description of the N–H···O and C–H···Y hydrogen bonds is given.


Sign in / Sign up

Export Citation Format

Share Document