Thermally conductive, super flexible and flame-retardant BN-OH/PVA composite film reinforced by lignin nanoparticles

2019 ◽  
Vol 7 (45) ◽  
pp. 14159-14169 ◽  
Author(s):  
Xiu Wang ◽  
Song-Lin Ji ◽  
Xin-Qi Wang ◽  
Hui-Yang Bian ◽  
Ling-Rui Lin ◽  
...  

LNPs were utilized as functional fillers to enhance the thermal conductivity, flame-retardancy, and flexibility of BN-OH/PVA composite film.

2018 ◽  
Vol 38 (8) ◽  
pp. 767-774 ◽  
Author(s):  
Liang Wang ◽  
Luchong Zhang ◽  
Andreas Fischer ◽  
Yuhua Zhong ◽  
Dietmar Drummer ◽  
...  

Abstract High performance composite of polyamide 6 (PA6)/flame retardant (FR)/hexagonal boron nitride (hBN) was prepared via twin screw extrusion, followed by injection molding. The heat dissipation of the composite was significantly improved by incorporating 40 vol% of hBN, and the corresponding thermal conductivity was up to 5.701 W/(m·K), nearly 17 times that of the PA6/FR composites. In addition, the combination effect of hBN and FR to the flame retardancy of the composites was observed, and the addition of hBN could dramatically enhance the flame retardancy of composites, achieving a UL94 V-0 rating with a limited oxygen index (LOI) value of 37%. This multifunctional modification would broaden the application field of PA6 composites in light-emitting diode (LED) lamps, electronic products, and so on.


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 379
Author(s):  
Seonmin Lee ◽  
Jooheon Kim

Aggregated boron nitride (ABN) is advantageous for increasing the packing and thermal conductivity of the matrix in composite materials, but can deteriorate the mechanical properties by breaking during processing. In addition, there are few studies on the use of Ti3C2 MXene as thermally conductive fillers. Herein, the development of a novel composite film is described. It incorporates MXene and ABN into poly(vinyl alcohol) (PVA) to achieve a high thermal conductivity. Polysilazane (PSZ)-coated ABN formed a heat conduction path in the composite film, and MXene supported it to further improve the thermal conductivity. The prepared polymer composite film is shown to provide through-plane and in-plane thermal conductivities of 1.51 and 4.28 W/mK at total filler contents of 44 wt.%. The composite film is also shown to exhibit a tensile strength of 11.96 MPa, which is much greater than that without MXene. Thus, it demonstrates that incorporating MXene as a thermally conductive filler can enhance the thermal and mechanical properties of composite films.


Nanomaterials ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 1051 ◽  
Author(s):  
Xiu Wang ◽  
Zhihuai Yu ◽  
Liang Jiao ◽  
Huiyang Bian ◽  
Weisheng Yang ◽  
...  

Hexagonal boron nitride (h-BN)-based heat-spreading materials have drawn considerable attention in electronic diaphragm and packaging fields because of their high thermal conductivity and desired electrical insulation properties. However, the traditional approach to fabricate thermally conductive composites usually suffers from low thermal conductivity, and cannot meet the requirement of thermal management. In this work, novel h-BN/cellulose-nano fiber (CNF) composite films with excellent thermal conductivity in through plane and electrical insulation properties are fabricated via an innovative process, i.e., the perfusion of h-BN into porous three dimensional (3D) CNF aerogel skeleton to form the h-BN thermally conductive pathways by filling the CNF aerogel voids. When at an h-BN loading of 9.51 vol %, the thermal conductivity of h-BN/CNF aerogel perfusion composite film is 1.488 W·m−1·K−1 at through plane, an increase by 260.3%. The volume resistivity is 3.83 × 1014 Ω·cm, superior to that of synthetic polymer materials (about 109~1013 Ω·cm). Therefore, the resulting h-BN/CNF film is very promising to replace the traditional synthetic polymer materials for a broad spectrum of applications, including the field of electronics.


2017 ◽  
Vol 5 (35) ◽  
pp. 18542-18550 ◽  
Author(s):  
Fubin Luo ◽  
Kun Wu ◽  
Jun Shi ◽  
Xiangxiang Du ◽  
Xiaoya Li ◽  
...  

Inspired by mussels, dopamine (DOPA) was used as a green reducing agent for graphene oxide (GO) to prepare a superior flame retardant and high thermal conductive flexible film.


e-Polymers ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 305-312 ◽  
Author(s):  
Lin Liu ◽  
Siyu Shen ◽  
Yiyao Wang

AbstractThe present work focuses on fabricating a flexible and thermally conductive PI composite film. The PI composite film was obtained by blending hexagonal boron nitride (h-BN) combined with ethyl cellulose and 2,2’-Bis(trifluoromethyl) benzidine (TFMB) functionalized GO (TFMB- GO) in polyimide (PI). The ethyl cellulose successfully formed the thermal conduction network by promoting the dispersion of h-BN in PI matrix. Thus, the thermal conductivity of the PI composite film with ethyl cellulose could be twice than PI film without ethyl cellulose. Besides, the PI composite film containing 30 wt% of h-BN could still exhibit excellent flexibility. Moreover, the combination of TFMB-GO could increase the tensile strength of the PI composite film by up to 80%. Overall, we provided a novel idea for the preparation of flexible substrate materials with efficient heat dissipation which was convenient and possible to apply widely in the industrial production.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4114 ◽  
Author(s):  
Fang Wang ◽  
Wenbo Shi ◽  
Yuliang Mai ◽  
Bing Liao

In this work, polyamide 6 (PA6) composites with improved flame retardancy and thermal conductivity were prepared with different thermal conductive fillers (TC fillers) such as aluminum nitride (AlN) and boron nitride (BN) in a PA6 matrix with aluminum diethylphosphinate (AlPi) as a fire retardant. The resultant halogen-free flame retardant (HFFR) and thermal conductive (TC) PA6 (HFFR-TC-PA6) were investigated in detail with a mechanical property test, a limiting oxygen index (LOI), the vertical burning test (UL-94), a cone calorimeter, a thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). The morphology of the impact fracture surface and char residue of the composites were analyzed by scanning electron microscopy (SEM). It was found that the thermal conductivity of the HFFR-TC-PA6 composite increased with the amount of TC fillers. The TC fillers exerted a positive effect for flame retardant PA6. For example, the HFFR-TC-PA6 composites with the thickness of 1.6 mm successfully passed the UL-94 V-0 rating with an LOI of more than 29% when the loading amount of AlN-550RFS, BN-SW08 and BN-NW04 was 30 wt%. The morphological structures of the char residues revealed that TC fillers formed a highly integrated char layer surface (without holes) during the combustion process, as compared to that of flame retardant PA6/AlPi composites. In addition, the thermal stability and crystallization behavior of the composites were studied.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2544
Author(s):  
Cenkai Xu ◽  
Chengmei Wei ◽  
Qihan Li ◽  
Zihan Li ◽  
Zongxi Zhang ◽  
...  

Dielectric materials with excellent thermally conductive and mechanical properties can enable disruptive performance enhancement in the areas of advanced electronics and high-power devices. However, simultaneously achieving high thermal conductivity and mechanical strength for a single material remains a challenge. Herein, we report a new strategy for preparing mechanically strong and thermally conductive composite films by combining aramid nanofibers (ANFs) with graphene oxide (GO) and edge-hydroxylated boron nitride nanosheet (BNNS-OH) via a vacuum-assisted filtration and hot-pressing technique. The obtained ANF/GO/BNNS film exhibits an ultrahigh in-plane thermal conductivity of 33.4 Wm−1K−1 at the loading of 10 wt.% GO and 50 wt.% BNNS-OH, which is 2080% higher than that of pure ANF film. The exceptional thermal conductivity results from the biomimetic nacreous “brick-and-mortar” layered structure of the composite film, in which favorable contacting and overlapping between the BNNS-OH and GO is generated, resulting in tightly packed thermal conduction networks. In addition, an outstanding tensile strength of 93.3 MPa is achieved for the composite film, owing to the special biomimetic nacreous structure as well as the strong π−π interactions and extensive hydrogen bonding between the GO and ANFs framework. Meanwhile, the obtained composite film displays excellent thermostability (Td = 555 °C, Tg > 400 °C) and electrical insulation (4.2 × 1014 Ω·cm). We believe that these findings shed some light on the design and fabrication of multifunctional materials for thermal management applications.


Author(s):  
Jiajun Hu ◽  
Hongyan Xia ◽  
Xinguang Hou ◽  
Ting Yang ◽  
Kang Si ◽  
...  

BP powders with high thermal conductivity were synthesized by a facile molten salt method and used as thermal conductive fillers to prepare nanofibrillated cellulose composite film with higher thermal conductivity.


Sign in / Sign up

Export Citation Format

Share Document