scholarly journals Characteristic synergistic cytotoxic effects toward cells in graphene oxide dressing with cadmium and copper ions

2019 ◽  
Vol 8 (6) ◽  
pp. 908-917 ◽  
Author(s):  
Yiyang Dong ◽  
Yulin Chang ◽  
Haidi Gao ◽  
Victoria Arantza León Anchustegui ◽  
Qiang Yu ◽  
...  

Abstract The increasing applications of graphene oxide (GO) in bio-medicine, environment and other fields enhance the exposure possibility of human beings to GO. Studies have been performed to address the in vitro toxicity of GO; however, little information on the in vivo biological consequence of GO with other common disasters is available, especially when cells are co-exposed to GO and common metal ions. To explore the influence and possible mechanisms of such co-exposure scenarios, a series of tests of cell viability, membrane integrity, reactive oxygen species (ROS), cell morphology, and Cd2+ distribution, were conducted. The results showed that the synergistic toxic mechanisms of GO and Cd2+, initiated from the adhesion of GO on HeLa cells, and followed by the recruitment of Cd2+ ions around the cell membrane, impaired the membrane integrity, morphology and adhesion capability, and triggered cell toxicity. The synergistic toxic mechanism of GO and Cu2+ mainly correlated to ROS, while no obvious relationship with membrane integrity was observed. The findings are envisaged to facilitate the application of GO in biology and related fields.

2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Manli Yang ◽  
Hassan Ahmed ◽  
Weidong Wu ◽  
Bijie Jiang ◽  
Zhenquan Jia

Atmospheric pollution has been a principal topic recently in the scientific and political community due to its role and impact on human and ecological health. 9,10-phenanthrenequinone (9,10-PQ) is a quinone molecule found in air pollution abundantly in the diesel exhaust particles (DEP). This compound has studied extensively and has been shown to develop cytotoxic effects both in vitro and in vivo. 9, 10-PQ has been proposed to play a critical role in the development of cytotoxicity via generation of reactive oxygen species (ROS) through redox cycling. This compound also reduces expression of glutathione (GSH), which is critical in Phase II detoxification reactions. Understanding the underlying cellular mechanisms involved in cytotoxicity can allow for the development of therapeutics designed to target specific molecules significantly involved in the 9,10-PQ-induced ROS toxicity. This review highlights the developments in the understanding of the cytotoxic effects of 9, 10-PQ with special emphasis on the possible mechanisms involved.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 466
Author(s):  
Anikó Gaál ◽  
Tamás M. Garay ◽  
Ildikó Horváth ◽  
Domokos Máthé ◽  
Dávid Szöllősi ◽  
...  

Liposomes containing copper and the copper ionophore neocuproine were prepared and characterized for in vitro and in vivo anticancer activity. Thermosensitive PEGylated liposomes were prepared with different molar ratios of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) and hydrogenated soybean phosphatidylcholine (HSPC) in the presence of copper(II) ions. Optimal, temperature dependent drug release was obtained at 70:30 DPPC to HSPC weight ratio. Neocuproine (applied at 0.2 mol to 1 mol phospholipid) was encapsulated through a pH gradient while using unbuffered solution at pH 4.5 inside the liposomes, and 100 mM HEPES buffer pH 7.8 outside the liposomes. Copper ions were present in excess, yielding 0.5 mM copper-(neocuproine)2 complex and 0.5 mM free copper. Pre-heating to 45 °C increased the toxicity of the heat-sensitive liposomes in short-term in vitro experiments, whereas at 72 h all investigated liposomes exhibited similar in vitro toxicity to the copper(II)-neocuproine complex (1:1 ratio). Thermosensitive liposomes were found to be more effective in reducing tumor growth in BALB/c mice engrafted with C26 cancer cells, regardless of the mild hyperthermic treatment. Copper uptake of the tumor was verified by PET/CT imaging following treatment with [64Cu]Cu-neocuproine liposomes. Taken together, our results demonstrate the feasibility of targeting a copper nanotoxin that was encapsulated in thermosensitive liposomes containing an excess of copper.


2013 ◽  
Vol 33 (1) ◽  
pp. 41-53 ◽  
Author(s):  
J J van Tonder ◽  
M Gulumian ◽  
A D Cromarty ◽  
V Steenkamp

The organochlorine pesticide, dichlorodiphenyltrichloroethane (DDT), is still used to combat the spread of malaria in several developing countries despite its accumulation and known hepatotoxic effects that have been demonstrated both in vitro and in vivo. N-Acetylcysteine (NAC) is a recognized hepatoprotective agent that has been reported to reduce hepatotoxicity initiated by many different compounds. The aim of this study was to determine whether NAC could counter in vitro hepatocyte injury induced by DDT or its two major metabolites, dichlorodiphenyldichloroethylene and dichlorodiphenyldichloroethane. HepG2 cell cultures were used to assess the following parameters of toxicity: cellular viability, intracellular levels of reactive oxygen species (ROS), mitochondrial membrane potential and initiation of apoptosis. None of the three test compounds induced ROS generation, yet exposure to any of the three compounds produced mitochondrial hyperpolarization, which was countered by NAC pretreatment. All three test compounds also induced apoptotic cell death, which was inhibited by NAC. Despite NAC counteracting some adverse intracellular changes due to organochlorine exposure, it appeared to aggravate the cytotoxic effects of the organochlorine compounds at low test concentrations. As the same outcome may also occur in vivo, results from the present study raise concern about the use of NAC as treatment for DDT-induced hepatotoxicity.


PLoS ONE ◽  
2014 ◽  
Vol 9 (4) ◽  
pp. e92962 ◽  
Author(s):  
Yunhai Dai ◽  
Xiaopeng Xiong ◽  
Gang Huang ◽  
Jianjun Liu ◽  
Shile Sheng ◽  
...  

2012 ◽  
Vol 81 (2) ◽  
pp. 175-182 ◽  
Author(s):  
Anna Rymuszka

The aim of this study was to investigate the potential cytotoxic effects of different concentrations (0.01, 0.025, 0.05, 0.1 and 1 µg/ml medium) of pure anatoxin-a on carp immune cells (in vitro study). Furthermore, changes in the cell immune functions isolated from 10 carp exposed by immersion to anatoxin-a (25 µg/l) for 5 days have been examined. Cytotoxicity of the toxin to leukocytes was determined by measuring intracellular adenosine triphosphate and glutathione concentrations. Lymphocyte proliferation was determined by measurement of bromodeoxyuridine incorporation during DNA synthesis. The phagocytes were assayed for intracellular production of reactive oxygen species. The in vitro results showed that pure toxin induced adverse effects on immune cells only after application of the higher concentrations (0.05, 0.1 and 1 µg/ml). Phagocytes exposed to anatoxin-a exhibited a significant (P < 0.05) reduction in glutathione concentration. The lymphocyte proliferation was decreased by the toxin, and B cells were more sensitive than T cells. The present study showed for the first time that anatoxin-a administered to fish by immersion, had suppressive effects on lymphocyte proliferation and the antioxidant potential of phagocytes.


Carbon ◽  
2016 ◽  
Vol 103 ◽  
pp. 291-298 ◽  
Author(s):  
Valeria Ettorre ◽  
Patrizia De Marco ◽  
Susi Zara ◽  
Vittoria Perrotti ◽  
Antonio Scarano ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sajad Bahrami ◽  
Nafiseh Baheiraei ◽  
Mostafa Shahrezaee

AbstractA variety of bone-related diseases and injures and limitations of traditional regeneration methods require new tissue substitutes. Tissue engineering and regeneration combined with nanomedicine can provide different natural or synthetic and combined scaffolds with bone mimicking properties for implantation in the injured area. In this study, we synthesized collagen (Col) and reduced graphene oxide coated collagen (Col-rGO) scaffolds, and we evaluated their in vitro and in vivo effects on bone tissue repair. Col and Col-rGO scaffolds were synthesized by chemical crosslinking and freeze-drying methods. The surface topography, and the mechanical and chemical properties of scaffolds were characterized, showing three-dimensional (3D) porous scaffolds and successful coating of rGO on Col. The rGO coating enhanced the mechanical strength of Col-rGO scaffolds to a greater extent than Col scaffolds by 2.8 times. Furthermore, Col-rGO scaffolds confirmed that graphene addition induced no cytotoxic effects and enhanced the viability and proliferation of human bone marrow-derived mesenchymal stem cells (hBMSCs) with 3D adherence and expansion. Finally, scaffold implantation into rabbit cranial bone defects for 12 weeks showed increased bone formation, confirmed by Hematoxylin–Eosin (H&E) and alizarin red staining. Overall, the study showed that rGO coating improves Col scaffold properties and could be a promising implant for bone injuries.


2021 ◽  
Vol 22 (13) ◽  
pp. 7202
Author(s):  
Tamara Bruna ◽  
Francisca Maldonado-Bravo ◽  
Paul Jara ◽  
Nelson Caro

Silver nanoparticles (AgNPs) have been imposed as an excellent antimicrobial agent being able to combat bacteria in vitro and in vivo causing infections. The antibacterial capacity of AgNPs covers Gram-negative and Gram-positive bacteria, including multidrug resistant strains. AgNPs exhibit multiple and simultaneous mechanisms of action and in combination with antibacterial agents as organic compounds or antibiotics it has shown synergistic effect against pathogens bacteria such as Escherichia coli and Staphylococcus aureus. The characteristics of silver nanoparticles make them suitable for their application in medical and healthcare products where they may treat infections or prevent them efficiently. With the urgent need for new efficient antibacterial agents, this review aims to establish factors affecting antibacterial and cytotoxic effects of silver nanoparticles, as well as to expose the advantages of using AgNPs as new antibacterial agents in combination with antibiotic, which will reduce the dosage needed and prevent secondary effects associated to both.


Sign in / Sign up

Export Citation Format

Share Document