scholarly journals High shear spheroidal topological fluid flow induced coating of polystyrene beads with C60 spicules

2021 ◽  
Author(s):  
Matt Jellicoe ◽  
Kasturi Vimalanathan ◽  
Jason R. Gascooke ◽  
Xuan Luo ◽  
Colin L. Raston

The manipulation of topological fluid flow to fabricate spicular C60 coated polystyrene beads under shear stress in the vortex fluidic device (VFD).

2012 ◽  
Vol 557-559 ◽  
pp. 2253-2256
Author(s):  
Liang Zhao ◽  
Song Lin Xu

A pervaporation simulation was used to describe the fluid flow in a spacer filled channel for trichloroacetic acid (TCA) removal from water-TCA solution. The effects of spacers on enhancing fluid flow performance were examined. The CFD simulation results suggest that the presence of spacers causes velocity fluctuation, high shear stress and high pressure drop. This work also reports that the size, shape and location of spacers influence fluid flow performance remarkably.


2021 ◽  
Author(s):  
Amira Husni Talib ◽  
Ilyani Abdullah ◽  
Nik Nabilah Nik Mohd Naser

2015 ◽  
Vol 112 (22) ◽  
pp. 6991-6996 ◽  
Author(s):  
Takashi Suzuki ◽  
Miho Suzuki ◽  
Shinji Ogino ◽  
Ryo Umemoto ◽  
Noritaka Nishida ◽  
...  

CD44 is the receptor for hyaluronan (HA) and mediates cell rolling under fluid shear stress. The HA-binding domain (HABD) of CD44 interconverts between a low-affinity, ordered (O) state and a high-affinity, partially disordered (PD) state, by the conformational change of the C-terminal region, which is connected to the plasma membrane. To examine the role of tensile force on CD44-mediated rolling, we used a cell-free rolling system, in which recombinant HABDs were attached to beads through a C-terminal or N-terminal tag. We found that the rolling behavior was stabilized only at high shear stress, when the HABD was attached through the C-terminal tag. In contrast, no difference was observed for the beads coated with HABD mutants that constitutively adopt either the O state or the PD state. Steered molecular dynamics simulations suggested that the force from the C terminus disrupts the interaction between the C-terminal region and the core of the domain, thus providing structural insights into how the mechanical force triggers the allosteric O-to-PD transition. Based on these results, we propose that the force applied from the C terminus enhances the HABD–HA interactions by inducing the conformational change to the high-affinity PD transition more rapidly, thereby enabling CD44 to mediate lymphocyte trafficking and hematopoietic progenitor cell homing under high-shear conditions.


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3128
Author(s):  
Thomas R. Coughlin ◽  
Ali Sana ◽  
Kevin Voss ◽  
Abhilash Gadi ◽  
Upal Basu-Roy ◽  
...  

Osteosarcoma (OS) is an aggressive bone cancer originating in the mesenchymal lineage. Prognosis for metastatic disease is poor, with a mortality rate of approximately 40%; OS is an aggressive disease for which new treatments are needed. All bone cells are sensitive to their mechanical/physical surroundings and changes in these surroundings can affect their behavior. However, it is not well understood how OS cells specifically respond to fluid movement, or substrate stiffness—two stimuli of relevance in the tumor microenvironment. We used cells from spontaneous OS tumors in a mouse engineered to have a bone-specific knockout of pRb-1 and p53 in the osteoblast lineage. We silenced Sox2 (which regulates YAP) and tested the effect of fluid flow shear stress (FFSS) and substrate stiffness on YAP expression/activity—which was significantly reduced by loss of Sox2, but that effect was reversed by FFSS but not by substrate stiffness. Osteogenic gene expression was also reduced in the absence of Sox2 but again this was reversed by FFSS and remained largely unaffected by substrate stiffness. Thus we described the effect of two distinct stimuli on the mechanosensory and osteogenic profiles of OS cells. Taken together, these data suggest that modulation of fluid movement through, or stiffness levels within, OS tumors could represent a novel consideration in the development of new treatments to prevent their progression.


2013 ◽  
Vol 33 (suppl_1) ◽  
Author(s):  
Stefania Simeone ◽  
Talin Ebrahimian ◽  
Veronique Michaud ◽  
Stephanie Lehoux

Atherosclerotic plaques form in regions of low blood flow, whereas vessels exposed to high shear stress remain lesion-free. We hypothesized that exposing established atherosclerotic plaques to elevated shear stress leads to lesion regression by facilitating inflammatory cell movement within the plaque. We developed a model of arteriovenous fistula (AVF) in mice, where the right carotid artery is anastomosed into the jugular vein. LDLR-/- mice were placed on a high-fat diet. Control mice were sacrificed at week 12, which coincided with sham and AVF surgery. Sham and AVF mice were kept on a high-fat diet for a further 4 weeks. This procedure increases the shear stress in the brachiocephalic artery (BCA) and leads to a 51% plaque regression in AVF. All groups had comparable lipid levels. However, BCA plaque macrophage, smooth muscle cell and collagen content was halved in AVF. We observed greater gelatinase activity in plaques of AVF mice, suggesting a role for matrix metalloproteinases (MMPs) in plaque regression. MMP-9 and MMP-3 expression was increased in AVF plaques whereas MMP-2 and MMP-14 expression was decreased (p<0.05). A separate group of mice was therefore treated post-surgery with an MMP inhibitor, doxycycline, or with a TIMP-1 over-expressing plasmid. Both prevented the reduction in plaque size in the AVF group. To better define the mechanism of plaque regression in the AVF, we devised an endothelial cell (EC)-macrophage co-culture system where the ECs were exposed to high, low or no shear stress, and macrophages exposed to the EC effluent. There was a 2.5 fold increase in the migration of macrophages exposed to high shear effluent vs. low shear (p<0.05). This coincided with a 3-fold increase in the number of macrophages expressing activated β1 integrin in the high shear conditions. Uptake of apoptotic cells by macrophages was also 25% higher in the high shear vs. static (p<0.05). When repeated using the MMP inhibitor, GM6001, the high shear increase in migration was blocked in the presence of MMP inhibition; however, it had no effect on cell phagocytosis. Our findings suggest that shear stress acting on ECs may influence the cells within the plaque by increasing MMP activity allowing for better macrophage motility, an important feature of regressing plaques.


1999 ◽  
Author(s):  
Daniel P. Nicolella ◽  
Eugene Sprague ◽  
Lynda Bonewald

Abstract It has been shown that bone cells are more responsive to fluid flow induced shear stress as compared to applied substrate strain (Owan, et al., 1997, Smalt, et al., 1997). Using novel micromechanical analysis techniques, we have measured individual cell strains resulting from 10 minutes of continuous fluid flow at a flow rate that produces a shear stress of 15 dyne/cm2. Individual cell strains varied widely from less than 1.0% to over 25% strain within the same group of cells. The increased sensitivity of cells to fluid flow induced shear stress may be attributed to much greater cellular deformations resulting from fluid flow induced sheer stress.


2018 ◽  
Vol 39 (suppl_1) ◽  
Author(s):  
H Spillemaeker ◽  
A Dupont ◽  
A Kauskot ◽  
A Rauch ◽  
F Vincent ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document