scholarly journals Controlling interface properties for enhanced photocatalytic performance: a case-study of CuO/TiO2 nanobelts

2020 ◽  
Vol 1 (4) ◽  
pp. 767-773
Author(s):  
Huaqiang Zhuang ◽  
Siying Zhang ◽  
Manru Lin ◽  
Liqin Lin ◽  
Zhenping Cai ◽  
...  

In this work, CuO/TiO2 nanobelts were designed and fabricated to study the photocatalytic oxidation process using a facile strategy.

Catalysts ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 828 ◽  
Author(s):  
Qinfen Tian ◽  
Shiming Ren ◽  
Zaiwei Cai ◽  
Changhao Chen ◽  
Yi Zheng ◽  
...  

Porous ZnGa2O4 microspheres (P-ZGO) are synthesized by a facial glucose-mediated microwave hydrothermal method followed by annealing. The morphological, photoelectric and photocatalytic properties of the as-prepared P-ZGO sample are characterized in detail, and the results show that the P-ZGO photocatalyst has a good crystallinity, large species surface area, hierarchical mesoporosity, and distinguished photoelectric properties. Under 254 nm UV irradiation, the P-ZGO sample shows a much higher activity and stability than TiO2 in the photocatalytic degradation of gas-phase aromatic pollutants. The average conversion efficiencies of toluene and benzene over P-ZGO are ~56.6% and ~44.3%, and with corresponding mineralization rates of ~86.3% and ~65.2%, respectively. No remarkable deactivation of P-ZGO is observed in a 60 h heterogeneous photoreaction. Furthermore, the as-prepared P-ZGO sample also shows an excellent photocatalytic efficiency (up to 99.8%) for the liquid-phase As(III) removal from water. The distinguished photocatalytic performance of P-ZGO can be ascribed to its unique electronic structures and hierarchical morphologies. According to the results of our analysis, a possible mechanism is also proposed to elaborate the photocatalytic oxidation process in the pollutants/P-ZGO system.


2012 ◽  
Vol 10 (4) ◽  
pp. 1149-1156 ◽  
Author(s):  
Florin Leon ◽  
Ciprian Piuleac ◽  
Silvia Curteanu ◽  
Ioannis Poulios

AbstractIn this paper, a modified nearest-neighbor regression method (kNN) is proposed to model a process with incomplete information of the measurements. This technique is based on the variation of the coefficients used to weight the distances of the instances. The case study selected for testing this algorithm was the photocatalytic degradation of Reactive Red 184 (RR184), a dye belonging to the group of azo compounds, which is widely used in manufacturing paint paper, leather and fabrics. The process is conducted with TiO2 as catalyst (an inexpensive semiconductor material, completely inert chemically and biologically), in the presence of H2O2 (with the role of increasing the rate of photo-oxidation), at different pH values. The final concentration of RR184 is predicted accurately with the modified kNN regression method developed in this article. A comparison with other machine learning methods (sequential minimal optimization regression, decision table, reduced error pruning tree, M5 pruned model tree) proves the superiority and efficiency of the proposed algorithm, not only for its results, but for its simplicity and flexibility in manipulating incomplete experimental data.


2019 ◽  
Vol 18 (8) ◽  
pp. 1683-1692 ◽  
Author(s):  
Lidia Favier ◽  
Lacramioara Rusu ◽  
Andrei Ionut Simion ◽  
Raluca Maria Hlihor ◽  
Mariana Liliana Pacala ◽  
...  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Wail Al Zoubi ◽  
Abbas Ali Salih Al-Hamdani ◽  
Baek Sunghun ◽  
Young Gun Ko

Abstract Heterogeneous photocatalysts was a promising material for removing organic pollutants. Titanium dioxide (TiO2) was a suitable photocatalyst for its cost efficiency and high stability to reduce various pollutants. Enhancing TiO2 photocatalyst performance by doping with changed metals or non-metal ions and organic compounds have been reviewed. These methods could enhance photoelectrochemical activity via: (i) by a donor of electrons via electron-donor agents that would produce particular defects in TiO2 structure and capture transporters of charge; (ii) by reducing recombination rate of the charge transporters and increasing degradation of pollutants. This study investigates the modification approaches of TiO2 that comprise methods for overcoming the essential TiO2 restrictions and enhancing the photocatalytic degradation of organic pollutants. Consequently, it emphasized on the current progress of modified-TiO2 used for different pollutants in ambient conditions. Amendment techniques, such as inorganic and organic parts as doping, are studied. The reported experimental results obtained with the photocatalytic oxidation process for degrading organic pollutants were also collected and assessed.


2017 ◽  
Vol 71 (5) ◽  
pp. 310-310
Author(s):  
Doohyung Cho ◽  
Kunsik Park ◽  
Seongwook Yoo ◽  
Sanggi Kim ◽  
Jinhwan Lee ◽  
...  

2013 ◽  
Vol 22 ◽  
pp. 9-21 ◽  
Author(s):  
Chii Rong Yang ◽  
Tun Ping Teng ◽  
Yun Yu Yeh

In this study, we successfully combined RF magnetron sputtering of a pure Ti metal target and one-stage oxidation process with a wider oxygen ratio (10%-90%) and total sputtering flow rate (16-24 sccm) to produce TiO2thin films on a glass substrate. The crystallization, morphology, roughness, and thickness of the thin films were examined using XRD, HR-FESEM, AFM, and a profilometer. Subsequently, the photocatalytic performance was examined using a spectrometer and video tensiometer. The experimental results show that the TiO2thin films with a majority of anatase and higher roughness exhibit superior photocatalytic performance; the total sputtering gas flow rate of 18 sccm and oxygen content at 10% is the optimal option. Finally, an empirical formula to correlate the film thickness with deposition time was conducted for the sputtering flow rate of 18 sccm and the oxygen content of 10%.


Author(s):  
Priscila De Abreu ◽  
Erlon Lopes Pereira ◽  
Cláudio Milton Montenegro Campos ◽  
Fabiano Luiz Naves

Nanomaterials ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 53 ◽  
Author(s):  
Yuanyuan Li ◽  
Xiaofang Tian ◽  
Yaoqiong Wang ◽  
Qimei Yang ◽  
Yue Diao ◽  
...  

Using solar energy to remove antibiotics from aqueous environments via photocatalysis is highly desirable. In this work, a novel type-II heterojunction photocatalyst, MgSn(OH)6/SnO2, was successfully prepared via a facile one-pot in situ hydrothermal method at 220 °C for 24 h. The obtained heterojunctions were characterized via powder X-ray diffraction, Fourier-transform infrared spectroscopy, transmission electron microscopy, and ultraviolet-visible diffuse reflectance spectroscopy. The photocatalytic performance was evaluated for photodegradation of tetracycline solution under ultraviolet irradiation. The initial concentration of tetracycline solution was set to be 20 mg/L. The prepared heterojunctions exhibited superior photocatalytic activity compared with the parent MgSn(OH)6 and SnO2 compounds. Among them, the obtained MgSn(OH)6/SnO2 heterojunction with MgCl2·6H2O:SnCl4·5H2O = 4:5.2 (mmol) displayed the highest photocatalytic performance and the photodegradation efficiency conversion of 91% could be reached after 60 min under ultraviolet irradiation. The prepared heterojunction maintained its performance after four successive cycles of use. Active species trapping experiments demonstrated that holes were the dominant active species. Hydroxyl radicals and superoxide ions had minor effects on the photocatalytic oxidation of tetracycline. Photoelectrochemical measurements were used to investigate the photocatalytic mechanism. The enhancement of photocatalytic activity could be assigned to the formation of a type-II junction photocatalytic system, which was beneficial for efficient transfer and separation of photogenerated electrons and holes. This research provides an in situ growth strategy for the design of highly efficient photocatalysts for environmental restoration.


Sign in / Sign up

Export Citation Format

Share Document