Nitroxide radical polymers for emerging plastic energy storage and organic electronics: fundamentals, materials, and applications

2021 ◽  
Author(s):  
Yuan Xie ◽  
Kai Zhang ◽  
Yusuke Yamauchi ◽  
Kenichi Oyaizu ◽  
Zhongfan Jia

We review the electrochemical theory, material design, and device fabrication for nitroxide radical polymers in emerging plastic energy storage and organic electronics.

MRS Bulletin ◽  
2008 ◽  
Vol 33 (7) ◽  
pp. 653-662 ◽  
Author(s):  
Yueh-Lin Loo ◽  
Iain McCulloch

AbstractThe field of organic electronics is entering its commercial phase. The recent market introduction of the first prototypes based on organic transistors fabricated from solution is set to augment the existing market presence of organic light-emitting diode applications. Organic photovoltaic products are not far behind. In this article, we provide a brief overview of these devices, with our main focus being organic transistor applications. In particular, we examine some of the key performance requirements for working devices. We also review some of the important advances in semiconductor design and device fabrication techniques and discuss some of the technical challenges that remain in the optimization of next-generation products.


2004 ◽  
Vol 19 (7) ◽  
pp. 1889-1916 ◽  
Author(s):  
Gregor Witte ◽  
Christof Wöll

The growth of molecular adlayers on solid substrates is reviewed with aspecial emphasis on molecules of relevance for organic electronics. In particular,we will consider planar molecules with extended π-systems, namely acenes (anthracene, tetracene, pentacene), perylene, coronenes, diindenoperylene, 3,4,9,10-perylene-tetracarboxylicacid-dianhydride, poly-phenylenes, oligothiophenes, and phthalocyanines. Special consideration is given to the importance of the formation of ordered molecular overlayers, which are compared with the structure of the corresponding bulk crystals. Whenever possible, aspects relevant for device fabrication (morphology of deposited films, mobilities of charge carriers) will be addressed.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
David Adekoya ◽  
Shangshu Qian ◽  
Xingxing Gu ◽  
William Wen ◽  
Dongsheng Li ◽  
...  

Abstract Carbon nitrides (including CN, C2N, C3N, C3N4, C4N, and C5N) are a unique family of nitrogen-rich carbon materials with multiple beneficial properties in crystalline structures, morphologies, and electronic configurations. In this review, we provide a comprehensive review on these materials properties, theoretical advantages, the synthesis and modification strategies of different carbon nitride-based materials (CNBMs) and their application in existing and emerging rechargeable battery systems, such as lithium-ion batteries, sodium and potassium-ion batteries, lithium sulfur batteries, lithium oxygen batteries, lithium metal batteries, zinc-ion batteries, and solid-state batteries. The central theme of this review is to apply the theoretical and computational design to guide the experimental synthesis of CNBMs for energy storage, i.e., facilitate the application of first-principle studies and density functional theory for electrode material design, synthesis, and characterization of different CNBMs for the aforementioned rechargeable batteries. At last, we conclude with the challenges, and prospects of CNBMs, and propose future perspectives and strategies for further advancement of CNBMs for rechargeable batteries.


2009 ◽  
Author(s):  
Wihatmoko Waskitoaji ◽  
Takeo Suga ◽  
Hiroyuki Nishide ◽  
L. T. Handoko ◽  
Masbah R. T. Siregar

2021 ◽  
Vol 3 ◽  
Author(s):  
Hiroshi Sato ◽  
Hisashi Shima ◽  
Toshiki Nokami ◽  
Toshiyuki Itoh ◽  
Yusei Honma ◽  
...  

We demonstrate a new memristive device (IL-Memristor), in which an ionic liquid (IL) serve as a material to control the volatility of the resistance. ILs are ultra-low vapor pressure liquids consisting of cations and anions at room temperature, and their introduction into solid-state processes can provide new avenues in electronic device fabrication. Because the device resistance change in IL-Memristor is governed by a Cu filament formation/rupture in IL, we considered that the Cu filament stability affects the data retention characteristics. Therefore, we controlled the data retention time by clarifying the corrosion mechanism and performing the IL material design based on the results. It was found out that the corrosion of Cu filaments in the IL was ruled by the comproportionation reaction, and that the data retention characteristics of the devices varied depending on the valence of Cu ions added to the IL. Actually, IL-Memristors involving Cu(II) and Cu(I) show volatile and non-volatile nature with respect to the programmed resistance value, respectively. Our results showed that data volatility can be controlled through the metal ion species added to the IL. The present work indicates that IL-memristor is suitable for unique applications such as artificial neuron with tunable fading characteristics that is applicable to phenomena with a wide range of timescale.


2021 ◽  
Author(s):  
Wenjie Liu ◽  
Ke Yang ◽  
Shuai Zhang ◽  
Zhainan Zhang ◽  
Rijie Xu

Abstract The instability of underground spaces in abandoned coal mines with water-immersed rocks is one of the main hazards hindering the geothermal energy utilization and ecological restoration of post-mining areas. This study conducted graded cyclic loading-unloading tests of five groups of sandstone samples with different water contents. The evolution laws of input, elastic, dissipated, damping, and plastic energies were explored in detail, taking into account the damping effect. The normalized plastic energy was used to characterize the damage evolution of sandstone samples, which failure modes were analyzed from both macroscopic and microscopic perspectives. The X-ray diffraction technique and scanning electron microscopy were used to reveal the softening mechanism of sandstone's strength and elastic energy storage limit. The results showed that the graded cyclic loading's input, elastic, and dissipated energies increased gradually. The elastic energy share first increased and then stabilized, while dissipated energy share variation had the opposite trend. In each cycle, the input energy was primarily stored in the form of elastic energy, while the dissipated energy was mainly used to overcome the damping of sandstone. When the normalized number of cycles approached unity, the plastic energy share sharply increased, while that of the dampening energy featured an abrupt drop. Such change indicated an inevitable instability failure of the water-bearing sandstone. As the water content increased, the pore water exhibited more substantial lubrication, water-wedging, and dissolution effects on mineral particles. As a result, the latter obtained a round form, and the elastic energy storage limit of the sandstone decreased. When the water content was increased, the damage factor of sandstone after the same number of cycles increased at a relatively higher rate, and there was a transition of failure mode from brittle to ductile.


Sign in / Sign up

Export Citation Format

Share Document