Novel malonic acid assisted synthesized porous Fe2O3 microspheres for ultra-fast response and recovery toward triethylamine

2020 ◽  
Vol 44 (15) ◽  
pp. 5929-5936
Author(s):  
Chengbo Zhai ◽  
Yi Liu ◽  
Liyong Du ◽  
Dongxue Wang ◽  
Mingzhe Zhang

A porous Fe2O3 microsphere-based sensor exhibits ultra-fast TEA response/recovery speeds and a broad detection range.

2021 ◽  
Vol 21 (4) ◽  
pp. 2495-2499
Author(s):  
Hoang Si Hong ◽  
Tran Vinh Hoang

We developed a novel sensor structure by synthesizing Pd nanocubes (NCs) decorated on ZnO nanostructures (NSs) applied to resistive-type H2 gas sensor with micro-length in sensing channel. The ZnO NSs were selectively grown between micro-size finger-like interdigital electrodes through microelectromechanical technology. The novel H2 sensor structure with the sensing channel was reduced to micro-size by this proposed method to obtain a sensor with fast response/recovery time. The as-prepared structure exhibited robust sensing performance with a response of 11% at optimal temperature of 150 °C, good linearity, and fast response/recovery time within 10 s. The speed of chemisorption through the diffusion pathway in Pd NCs combined with micro-length in sensing channel in sensor showed fast response and recovery times of 9 and 15 s, respectively, toward 10,000 ppm (1%) H2 at 150 °C. The result showed approximate linearity response in H2 concentration range of 5÷10,000 ppm and a large operating temperature range from room temperature to 200 °C.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3026
Author(s):  
Zuquan Wu ◽  
Lei Liang ◽  
Shibu Zhu ◽  
Yifan Guo ◽  
Yao Yao ◽  
...  

Recently, as a two-dimensional (2D) material, black phosphorous (BP) has attracted more and more attention. However, few efforts have been made to investigate the BP/polyaniline (PANI) nanocomposite for ammonia (NH3) gas sensors. In this work, the BP/PANI nanocomposite as a novel sensing material for NH3 detection, has been synthesized via in situ chemical oxidative polymerization, which is then fabricated onto the interdigitated transducer (IDTs). The electrical properties of the BP/PANI thin film are studied in a large detection range from 1 to 4000 ppm, such as conduction mechanism, response, reproducibility, and selectivity. The experimental result indicates that the BP/PANI sensor shows higher sensitivity and larger detection range than that of PANI. The BP added into PANI, that may enlarge the specific surface area, obtain the special trough structure for gas channels, and form the p–π conjugation system and p–p isotype heterojunctions, which are beneficial to increase the response of BP/PANI to NH3 sensing. Meanwhile, in order to support the discussion result, the structure and morphology of the BP/PANI are respectively measured by Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV−vis), transmission electron microscopy (TEM), and field emissions scanning electron microscopy (SEM). Moreover, the sensor shows good reproducibility, and fast response and recovery behavior, on NH3 sensing. In addition, this route may offer the advantages of an NH3 sensor, which are of simple structure, low cost, easy to assemble, and operate at room temperature.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3829 ◽  
Author(s):  
Hongxiang Xu ◽  
Junhua Xu ◽  
Junlin Wei ◽  
Yamei Zhang

BiFeO3 nanocrystals were applied as the sensing material to isopropanol. The isopropanol sensor based on BiFeO3 nanocrystals shows excellent gas-sensing properties at the optimum working temperature of 240 °C. The sensitivity of as-prepared sensor to 100 ppm isopropanol is 31 and its response and recovery time is as fast as 6 and 17 s. The logarithmic curves of the sensitivity and concentration of BiFeO3 sensors are a very good linear in the low detection range of 2–100 ppm. In addition, the gas sensing mechanism is also discussed. The results suggest that the BiFeO3 nanomaterial can be potentially applied in isopropanol gas detection.


Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2210
Author(s):  
Yao Yao ◽  
Xianhe Huang ◽  
Qiao Chen ◽  
Zhen Zhang ◽  
Weiwei Ling

In this paper, a high sensitivity and high stability quartz crystal microbalance (QCM) humidity sensor using polydopamine (PDA) coated cellulose nanocrystal (CNC)/graphene oxide (GO) (PDA@CNC/GO) nanocomposite as sensitive material is demonstrated. The PDA@CNC was prepared by the self-polymerization action on the surface of CNC, and it acted as filler material to form functional nanocomposite with GO. The material characteristics of PDA@CNC, CNC/GO and PDA@CNC/GO were analyzed by transmission electron microscope (TEM) and Fourier transform infrared spectroscopy (FTIR), respectively. The experimental results show that the introduction of PDA@CNC into GO film not only effectively enhanced the sensitivity of GO-based nanocomposite-coated QCM sensor but also significantly maintained high stability in the entire humidity range. The PDA@CNC/GO30-coated QCM humidity sensor exhibited a superior response sensitivity up to 54.66 Hz/% relative humidity (RH), while the change rate of dynamic resistance of the sensor in the humidity range of 11.3–97.3% RH is only 14% that is much smaller than that of CNC/GO-coated QCM. Besides, the effect of the PDA@CNC content on the sensitivity and stability of GO-based nanocomposite-coated QCM humidity was also studied. Moreover, other performances of PDA@CNC/GO-coated QCM humidity sensor, including humidity hysteresis, fast response and recovery and long-term stability, were systematically investigated. This work suggests that PDA@CNC/GO nanocomposite is a promising candidate material for realizing high sensitivity and high stability QCM humidity sensor in the entire humidity detection range.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 648
Author(s):  
Aijie Liang ◽  
Jingyuan Ming ◽  
Wenguo Zhu ◽  
Heyuan Guan ◽  
Xinyang Han ◽  
...  

Breath monitoring is significant in assessing human body conditions, such as cardiac and pulmonary symptoms. Optical fiber-based sensors have attracted much attention since they are immune to electromagnetic radiation, thus are safe for patients. Here, a microfiber (MF) humidity sensor is fabricated by coating tin disulfide (SnS2) nanosheets onto the surface of MF. The small diameter (~8 μm) and the long length (~5 mm) of the MF promise strong interaction between guiding light and SnS2. Thus, a small variation in the relative humidity (RH) will lead to a large change in optical transmitted power. A high RH sensitivity of 0.57 dB/%RH is therefore achieved. The response and recovery times are estimated to be 0.08 and 0.28 s, respectively. The high sensitivity and fast response speed enable our SnS2-MF sensor to monitor human breath in real time.


2007 ◽  
Vol 124-126 ◽  
pp. 1309-1312
Author(s):  
Nguyen Duc Hoa ◽  
Nguyen Van Quy ◽  
Gyu Seok Choi ◽  
You Suk Cho ◽  
Se Young Jeong ◽  
...  

A new type of gas sensor was realized by directly depositing carbon nanotube on nano channels of the anodic alumina oxide (AAO) fabricated on p-type silicon substrate. The carbon nanotubes were synthesized by thermal chemical vapor deposition at a very high temperature of 1200 oC to improve the crystallinity. The device fabrication process was also developed. The contact of carbon nanotubes and p-type Si substrate showed a Schottky behavior, and the Schottky barrier height increased with exposure to gases while the overall conductivity decreased. The sensors showed fast response and recovery to ammonia gas upon the filling (400 mTorr) and evacuation.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1915
Author(s):  
Shenawar Ali Khan ◽  
Muhammad Saqib ◽  
Muhammad Muqeet Rehman ◽  
Hafiz Mohammad Mutee Ur Rehman ◽  
Sheik Abdur Rahman ◽  
...  

A novel composite based on a polymer (P(VDF-TrFE)) and a two-dimensional material (graphene flower) was proposed as the active layer of an interdigitated electrode (IDEs) based humidity sensor. Silver (Ag) IDEs were screen printed on a flexible polyethylene terephthalate (PET) substrate followed by spin coating the active layer of P(VDF-TrFE)/graphene flower on its surface. It was observed that this sensor responds to a wide relative humidity range (RH%) of 8–98% with a fast response and recovery time of 0.8 s and 2.5 s for the capacitance, respectively. The fabricated sensor displayed an inversely proportional response between capacitance and RH%, while a directly proportional relationship was observed between its impedance and RH%. P(VDF-TrFE)/graphene flower-based flexible humidity sensor exhibited high sensitivity with an average change of capacitance as 0.0558 pF/RH%. Stability of obtained results was monitored for two weeks without any considerable change in the original values, signifying its high reliability. Various chemical, morphological, and electrical characterizations were performed to comprehensively study the humidity-sensing behavior of this advanced composite. The fabricated sensor was successfully used for the applications of health monitoring and measuring the water content in the environment.


2018 ◽  
Vol 449 ◽  
pp. 244-249 ◽  
Author(s):  
Nancy Anna Anasthasiya A. ◽  
Roopa Kishore Kampara ◽  
Rai P.K. ◽  
Jeyaprakash B.G.

2018 ◽  
Vol 43 (50) ◽  
pp. 22746-22755 ◽  
Author(s):  
Zhijie Li ◽  
Shengnan Yan ◽  
Zhonglin Wu ◽  
Hao Li ◽  
Junqiang Wang ◽  
...  

2016 ◽  
Vol 13 (13) ◽  
pp. 3915-3930 ◽  
Author(s):  
Tae Kyung Yoon ◽  
Hyojin Jin ◽  
Neung-Hwan Oh ◽  
Ji-Hyung Park

Abstract. High-frequency continuous measurements of the partial pressure of CO2 (pCO2) are crucial for constraining the spatiotemporal dynamics of CO2 emissions from inland water systems. However, direct measurements of pCO2 are scarce, and no systematic comparisons have been conducted on the suitability of the widely used measurement systems for continuous underway or long-term deployment in various field conditions. We compared spray- and marble-type equilibrators and a membrane-enclosed CO2 sensor to assess their suitability for continuous long-term or underway pCO2 measurements in an urbanized river system in Korea. Both equilibrators had a shorter response time compared with the membrane-enclosed sensor, and could capture large spatial variations of pCO2 during a transect study along a highly urbanized river reach. The membrane-enclosed sensor based on passive equilibration provided comparable underway measurements along the river sections where pCO2 varied within the sensor detection range. When deployed in a eutrophic river site, the membrane-enclosed sensor was able to detect large diel variations in pCO2. However, biofouling on the membrane could reduce the accuracy of the measurement during long deployments exceeding several days. The overall results suggest that the fast response of the equilibrator systems facilitates capturing large spatial variations in pCO2 during short underway measurements. However, the attendant technical challenges of these systems, such as clogging and desiccant maintenance, have to be addressed carefully to enable their long-term deployment. The membrane-enclosed sensor would be suitable as an alternative tool for long-term continuous measurements if membrane biofouling could be overcome by appropriate antifouling measures such as copper mesh coverings.


Sign in / Sign up

Export Citation Format

Share Document