scholarly journals Detection techniques of biological and chemical Hall sensors

RSC Advances ◽  
2021 ◽  
Vol 11 (13) ◽  
pp. 7257-7270
Author(s):  
Hua Fan ◽  
Jiangming Wang ◽  
Quanyuan Feng ◽  
Qiang Hu ◽  
Siming Zuo ◽  
...  

Integrated magnetic Hall effect sensors have been widely used in people's lives over the past decades. They are still gaining enormous attention from researchers to establish novel applications, especially in biochemistry and biomedical healthcare.

2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Majid Nour ◽  
Nihat Daldal ◽  
Mehmet Fatih Kahraman ◽  
Hatem Sindi ◽  
Adi Alhudhaif ◽  
...  

A tilt sensor is a device used to measure the tilt on many axes of a reference point. Tilt sensors measure the bending position according to gravity and are used in many applications. Slope sensors allow easy detection of direction or slope in the air. These tilt gauges have become increasingly popular and are being adapted for a growing number of high-end applications. As an example of practical application, the tilt sensor provides valuable information about an aircraft’s vertical and horizontal tilt. This information also helps the pilot understand how to deal with obstacles during flight. In this paper, Hall-effect effective inclination and acceleration sensor design, which makes a real-time measurement, have been realized. 6 Hall-effect sensors with analog output (UGN-3503) have been used in the sensor structure. These sensors are placed in a machine, and the hall sensor outputs are continuously read according to the movement speed and direction of the sphere magnet placed in the assembly. Hall sensor outputs produce 0–5 Volt analog voltage according to the position of the magnet sphere to the sensor. It is clear that the sphere magnet moves according to the inclination of the mechanism when the mechanism is moved angularly, and the speed of movement from one point to the other changes according to the movement speed. Here, the sphere magnet moves between the hall sensors in the setup according to the ambient inclination and motion acceleration. Each sensor produces analog output values in the range of 0–5 V instantaneous according to the position of the spheroid. Generally defined, according to the sphere magnet position and movement speed, the data received from the hall sensors by the microcontroller have been sent to the computer or microcomputer unit as UART. In the next stage, the actual sensor has been removed. The angle and acceleration values have been continuously produced according to the mechanism’s movement and output as UART. Thanks to the fact that the magnet is not left idle and is fixed with springs, problems such as vibration noises and wrong movements and the magnet leaning to the very edge and being out of position even at a slight inclination are prevented. In addition, the Hall-effect sensor outputs are given to an artificial neural network (ANN), and the slope and acceleration information is estimated in the ANN by training with the data obtained from the real-time slope and accelerometer sensor.


Author(s):  
Tingting Yin ◽  
Zhong Yang ◽  
Youlong Wu ◽  
Fangxiu Jia

The high-precision roll attitude estimation of the decoupled canards relative to the projectile body based on the bipolar hall-effect sensors is proposed. Firstly, the basis engineering positioning method based on the edge detection is introduced. Secondly, the simplified dynamic relative roll model is established where the feature parameters are identified by fuzzy algorithms, while the high-precision real-time relative roll attitude estimation algorithm is proposed. Finally, the trajectory simulations and grounded experiments have been conducted to evaluate the advantages of the proposed method. The positioning error is compared with the engineering solution method, and it is proved that the proposed estimation method has the advantages of the high accuracy and good real-time performance.


Author(s):  
Harris Kristanto ◽  
Prathamesh Sathe ◽  
Alexander Schmitz ◽  
Chincheng Hsu ◽  
Tito Pradhono Tomo ◽  
...  

PEDIATRICS ◽  
1984 ◽  
Vol 74 (6) ◽  
pp. 1093-1096
Author(s):  
John M. Goldenring ◽  
Elizabeth Purtell

College athletes were surveyed about their knowledge and practice of early cancer detection techniques. Males were almost completely unaware of their risk for testicular cancer (87%). Only 9.6% had been taught testicular self-examination and only half of these by their physician. Six percent actually examined themselves regularly. In comparison, more than 60% of women had been taught breast self-examination (75% by a physician) and about one third were doing regular examinations. More than 90% of the young men and women had been seen by physicians for a physical examination within the past 3 years. Physicians need to begin educating males about testicular cancer and its early detection.


2021 ◽  
Vol 9 (1) ◽  
pp. 28
Author(s):  
Federico Hahn ◽  
Juan Espinoza ◽  
Ulises Zacarías

Mango is one of the main fruits grown in Mexico that are exported worldwide, but the trees consume a lot of water, and irrigation scheduling should be implemented to optimize water use. Dendrometers were installed in fruit trees to optimize water usage during 2019 and 2020. A capacitor with Teflon clamps pressurized the leaf, and its dielectric changed with leaf water content. Additionally, Hall sensors were installed in leaves to study the effect of water during mango production. It was found that capacitance tend to be more sensitive than magnetic field monitoring. Higher changes were noted during midday with warm weather. Thresholds from the capacitance and Hall effect sensors can provide signals for irrigation scheduling.


2019 ◽  
Vol 13 (2) ◽  
pp. 254-261
Author(s):  
William Alejandro López-Contreras ◽  
José Danilo Rairán-Antolines

We present the design of a magnetic encoder to measure angular position. The proposed encoder includes two Hall sensors in quadrature in a fixed platform. In addition, and over the sensors, there are two permanent magnets in a shaft. The relative motion between the fixed and the movable components generate a voltage variation in the sensors, which serve to generate the approximation of the angular position. We detail the acquisition process and the linearization method, because we consider that these are the most important contributions of this work. Lastly, we show the application of the encoder in the position control of a direct current motor to show the performance of the encoder estimating fast and slow angular position changes.


Sign in / Sign up

Export Citation Format

Share Document