scholarly journals Polymerization and isomerization cyclic amplification for nucleic acid detection with attomolar sensitivity

2021 ◽  
Vol 12 (12) ◽  
pp. 4509-4518
Author(s):  
Lin Lan ◽  
Jin Huang ◽  
Mengtan Liu ◽  
Yao Yin ◽  
Can Wei ◽  
...  

DNA amplification is one of the most valuable tools for the clinical diagnosis of nucleic acid-related diseases, but current techniques for DNA amplification are based on intermolecular polymerization reactions, resulting in the risk of errors in the intermolecular reaction pattern.

2021 ◽  
Vol 8 ◽  
Author(s):  
Fanwu Gong ◽  
Hua-xing Wei ◽  
Qiangsheng Li ◽  
Liu Liu ◽  
Bofeng Li

The worldwide pandemic of COVID-19 has become a global public health crisis. Various clinical diagnosis methods have been developed to distinguish COVID-19–infected patients from healthy people. The nucleic acid test is the golden standard for virus detection as it is suitable for early diagnosis. However, due to the low amount of viral nucleic acid in the respiratory tract, the sensitivity of nucleic acid detection is unsatisfactory. As a result, serological screening began to be widely used with the merits of simple procedures, lower cost, and shorter detection time. Serological tests currently include the enzyme-linked immunosorbent assay (ELISA), lateral flow immunoassay (LFIA), and chemiluminescence immunoassay (CLIA). This review describes various serological methods, discusses the performance and diagnostic effects of different methods, and points out the problems and the direction of optimization, to improve the efficiency of clinical diagnosis. These increasingly sophisticated and diverse serological diagnostic technologies will help human beings to control the spread of COVID-19.


2020 ◽  
Author(s):  
Yong Xiang ◽  
Lizhen Li ◽  
Peng Liu ◽  
Ling Yan ◽  
Zeng Jiang ◽  
...  

Abstract Avian leukosis virus subgroup J (ALV-J) causes oncogenic disease in chickens in China, resulting in great harm to poultry production. Herein, we employed a cross-priming amplification (CPA) approach and a nucleic acid detection device to establish a visual rapid detection method for ALV-J. When the amplification reaction was carried out at 60°C for just 60 min, the sensitivity of CPA was 10 times higher than conventional PCR, with high specificity, based on detection of 123 clinical plasma samples. The coincidence rate with real-time PCR was 97.3% (71/73). CPA detection of ALV-J does not require an expensive PCR instrument; a simple water bath or incubator is sufficient for complete DNA amplification, and the closed nucleic acid detection device avoids aerosol pollution, making judgment of results more intuitive and objective. The CPA assay would be a promising simple, rapid and sensitive method for identification of ALV-J.


Author(s):  
Alain Laurent ◽  
Arnaud Burr ◽  
Thibault Martin ◽  
Frédéric Lasnet ◽  
Sébastien Hauser ◽  
...  

Open Medicine ◽  
2007 ◽  
Vol 2 (3) ◽  
pp. 271-279 ◽  
Author(s):  
Koray Ergunay ◽  
Gulcin Altinok ◽  
Bora Gurel ◽  
Ahmet Pinar ◽  
Arzu Sungur ◽  
...  

AbstractIntrauterine Parvovirus B19 infections may cause fetal anemia, non-immune hydrops fetalis or abortion. This study focuses on the pathogenic role of Parvovirus B19 in non-immune hydrops fetalis at Hacettepe University, a major reference hospital in Turkey. Twenty-two cases of non-immune hydrops fetalis were retrospectively selected out of a total of 431 hydrops fetalis specimens from the Department of Pathology archieves. Paraffine embedded tissue sections from placental and liver tissues from each case were evaluated by histopathology, immunohistochemistry, nested PCR and commercial quantitative Real-time PCR. Viral DNA was detected in placental tissues by Real-time PCR in 2 cases (2/22, 9.1%) where histopathology also revealed changes suggestive of Parvovirus B19 infection. No significant histopathologic changes were observed for the remaining sections. Nested PCR that targets the VP1 region of the viral genome and immunohistochemistry for viral capsid antigens were negative for all cases. As a result, Parvovirus B19 is identified as the etiologic agent for the development of non-immune hydrops fetalis for 9.1% of the cases in Hacettepe University, Turkey. Real-time PCR is observed to be an effective diagnostic tool for nucleic acid detection from paraffine embedded tissues. Part of this study was presented as a poster at XIIIth International Congress of Virology, San Francisco, USA (Abstract V-572).


Sign in / Sign up

Export Citation Format

Share Document