scholarly journals Albumin-mediated alteration of plasma zinc speciation by fatty acids modulates blood clotting in type-2 diabetes

2021 ◽  
Author(s):  
Amélie I. S. Sobczak ◽  
Kondwani G. H. Katundu ◽  
Fladia A. Phoenix ◽  
Siavash Khazaipoul ◽  
Ruitao Yu ◽  
...  

Zn2+ is an essential regulator of coagulation. In plasma, Zn2+ availability is fine-tuned by human serum albumin (HSA). Here we show that elevated fatty acid levels contribute to altered coagulation in type-2 diabetes through Zn2+ mishandling by HSA.

2005 ◽  
Vol 387 (3) ◽  
pp. 695-702 ◽  
Author(s):  
Bill X. HUANG ◽  
Chhabil DASS ◽  
Hee-Yong KIM

Mass spectrometry with chemical cross-linking was used to probe the conformational changes of HSA (human serum albumin) in solution on interaction with monounsaturated OA (oleic acid) or polyunsaturated AA (arachidonic acid) or DHA (docosahexaenoic acid). Fatty acid-free or -bound HSA was modified with lysine-specific cross-linkers and digested with trypsin. Cross-linked peptides were analysed by nano-electrospray ionization MS to localize the sites of cross-linking. Our data indicated that a local conformational change involving movement of the side chains of Lys-402 of subdomain IIIA or Lys-541 of subdomain IIIB occurred upon binding of all three fatty acids. Our data also indicated that the side chains of Lys-205 (IIA) and Lys-466 (IIIA) moved closer towards each other upon binding AA or DHA, but not OA, suggesting that the conformations of HSA when bound to mono- and poly-unsaturated fatty acids are distinctively different. While these observations agreed with previous X-ray crystallographic studies, the distances between ε-amino groups of most cross-linked lysine pairs were shorter than the crystal structure predicted, possibly reflecting a discrepancy between the solution and crystal structures. This method can serve as a useful complement to X-ray crystallography, particularly in probing the structure of a protein in solution.


1984 ◽  
Vol 22 (01) ◽  
pp. 27-28
Author(s):  
M. Argentini ◽  
P. Bläuenstein ◽  
R. Lerch ◽  
P. A. Schubiger

SummaryThe most commonly used reagents for solubilization of 123I fatty acids have very serious drawbacks. Human serum albumin solubilizes the fatty acid only slowly and TWEEN 80 is not free of stability problems. Furthermore adverse reactions in human applications cannot be excluded. In comparison, the newly introduced mixed micells look very favourable: fast solubilization, good stability and no adverse reactions. Biodistribution experiments on rats show an adequate performance of the micells. Hitherto this solution has been applied in more than 200 patients without any complication.


1969 ◽  
Vol 45 (4) ◽  
pp. 489-493 ◽  
Author(s):  
P. W. NATHANIELSZ

SUMMARY Recently changes in plasma free fatty acids have been suggested as a possible regulator of the levels of free thyroxine in the plasma. Oleic acid has been shown to displace tri-iodothyronine from human serum, human serum albumin, rat serum, rabbit serum and guinea-pig serum. The extent of the displacement, much greater from human serum albumin than from whole serum, suggests that free fatty acid does not affect the globulin binding site. It would also appear that, in the rat, all the binding sites are sensitive to free fatty acids and hence there is probably only albumin binding in this species. The results with rabbit and guinea-pig serum were intermediate to those with human and rat serum. A significant rise in resin uptake of tri-iodothyronine in vitro occurred with an increase of free fatty acid level of 0·5 m-equiv./l., well within the physiological range.


2019 ◽  
Author(s):  
Amélie I. S. Sobczak ◽  
Kondwani G. H. Katundu ◽  
Fladia A. Phoenix ◽  
Siavash Khazaipoul ◽  
Ruitao Yu ◽  
...  

AbstractZn2+ is an essential regulator of coagulation and its availability in plasma is fine-tuned through buffering by human serum albumin (HSA). Non-esterified fatty acids (NEFAs) transported by HSA reduce its ability to bind/buffer Zn2+. This is important as plasma NEFA levels are elevated in type-2 diabetes mellitus (T2DM) and other diseases with an increased risk of developing thrombotic complications. The presence of 5 mol. eq. of myristate, palmitate, stearate, palmitoleate and palmitelaidate reduced Zn2+ binding to HSA. Addition of myristate and Zn2+ increased thrombin-induced platelet aggregation in platelet-rich plasma and increased fibrin clot density and clot time in a purified protein system. The concentrations of key saturated (myristate, palmitate, stearate) and monounsaturated (oleate, vaccinate) NEFAs positively correlated with clot density in subjects with T2DM (and controls). Collectively, these data strongly support the concept that elevated NEFA levels contribute to an increased thrombotic risk in T2DM through dysregulation of plasma zinc speciation.


2011 ◽  
Vol 100 (9) ◽  
pp. 2293-2301 ◽  
Author(s):  
Matthias J.N. Junk ◽  
Hans W. Spiess ◽  
Dariush Hinderberger

2021 ◽  
Vol 89 (3) ◽  
pp. 30
Author(s):  
Anna Ploch-Jankowska ◽  
Danuta Pentak ◽  
Jacek E. Nycz

Human serum albumin (HSA) is the most abundant human plasma protein. HSA plays a crucial role in many binding endos- and exogenous substances, which affects their pharmacological effect. The innovative aspect of the study is not only the interaction of fatted (HSA) and defatted (dHSA) human serum albumin with ibuprofen (IBU), but the analysis of the influence of temperature on the structural modifications of albumin and the interaction between the drug and proteins from the temperature characteristic of near hypothermia (308 K) to the temperature reflecting inflammation in the body (312 K and 314 K). Ibuprofen is a non-steroidal anti-inflammatory drug. IBU is used to relieve acute pain, inflammation, and fever. To determine ibuprofen’s binding site in the tertiary structure of HSA and dHSA, fluorescence spectroscopy was used. On its basis, the fluorescent emissive spectra of albumin (5 × 10−6 mol/dm3) without and with the presence of ibuprofen (1 × 10−5–1 × 10−4 mol/dm3) was recorded. The IBU-HSA complex’s fluorescence was excited by radiation of wavelengths of λex 275 nm and λex 295 nm. Spectrophotometric spectroscopy allowed for recording the absorbance spectra (zero-order and second derivative absorption spectra) of HSA and dHSA under the influence of ibuprofen (1 × 10−4 mol/dm3). To characterize the changes of albumin structure the presence of IBU, circular dichroism was used. The data obtained show that the presence of fatty acids and human serum albumin temperature influences the strength and type of interaction between serum albumin and drug. Ibuprofen binds more strongly to defatted human serum albumin than to albumin in the presence of fatty acids. Additionally, stronger complexes are formed with increasing temperatures. The competitive binding of ibuprofen and fatty acids to albumin may influence the concentration of free drug fraction and thus its therapeutic effect.


Sign in / Sign up

Export Citation Format

Share Document