scholarly journals Intrinsic activity modulation and structural design of NiFe alloy catalysts for an efficient oxygen evolution reaction

2021 ◽  
Author(s):  
Qiaoling Kang ◽  
Dawei Lai ◽  
Wenyin Tang ◽  
Qingyi Lu ◽  
Feng Gao

Effective strategies to increase the intrinsic activity by electronic modulation and to increase the number of active sites by structural design are discussed for improving the oxygen evolution activities of NiFe alloys.

2022 ◽  
Vol 9 ◽  
Author(s):  
Jiabiao Yan ◽  
Mingkun Xia ◽  
Chenguang Zhu ◽  
Dawei Chen ◽  
Fanglin Du

Perovskite oxides have been established as a promising kind of catalyst for alkaline oxygen evolution reactions (OER), because of their regulated non-precious metal components. However, the surface lattice is amorphous during the reaction, which gradually decreases the intrinsic activity and stability of catalysts. Herein, the precisely control tungsten atoms substituted perovskite oxides (Pr0.5Ba0.5Co1-xWxO3-δ) nanowires were developed by electrostatic spinning. The activity and Tafel slope were both dependent on the W content in a volcano-like fashion, and the optimized Pr0.5Ba0.5Co0.8W0.2O3-δ exhibits both excellent activity and superior stability compared with other reported perovskite oxides. Due to the outermost vacant orbitals of W6+, the electronic structure of cobalt sites could be efficiently optimized. Meanwhile, the stronger W-O bond could also significantly improve the stability of latticed oxide atoms to impede the generation of surface amorphous layers, which shows good application value in alkaline water splitting.


2020 ◽  
Author(s):  
Ioannis Spanos ◽  
Justus Masa ◽  
Aleksandar Zeradjanin ◽  
Robert Schlögl

AbstractThere is an ongoing debate on elucidating the actual role of Fe impurities in alkaline water electrolysis, acting either as reactivity mediators or as co-catalysts through synergistic interaction with the main catalyst material. This perspective summarizes the most prominent oxygen evolution reaction (OER) mechanisms mostly for Ni-based oxides as model transition metal catalysts and highlights the effect of Fe incorporation on the catalyst surface in the form of impurities originating from the electrolyte or co-precipitated in the catalyst lattice, in modulating the OER reaction kinetics, mechanism and stability. Graphic Abstract


Nanoscale ◽  
2021 ◽  
Author(s):  
Ya-Nan Zhou ◽  
Ruo-Yao Fan ◽  
Yu-Ning Cao ◽  
Hui-Ying Wang ◽  
Bin Dong ◽  
...  

The oriental distribution and strong conjunction of Fe active sites in multiple metals hydroxides are very crucial to modulate the activity and stability for efficient oxygen evolution reaction (OER). Whereas,...


Author(s):  
Kaiyao Wu ◽  
Fei Chu ◽  
Yuying Meng ◽  
Kaveh Edalati ◽  
Qingsheng Gao ◽  
...  

Transition metal-based amorphous alloys have attracted increasing attention as precious-metal-free electrocatalysts for oxygen evolution reaction (OER) of water splitting due to their high macro-conductivity and abundant surface active sites. However,...


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gang Zhou ◽  
Peifang Wang ◽  
Hao Li ◽  
Bin Hu ◽  
Yan Sun ◽  
...  

AbstractOxygen evolution reaction (OER) plays a determining role in electrochemical energy conversion devices, but challenges remain due to the lack of effective low-cost electrocatalysts and insufficient understanding about sluggish reaction kinetics. Distinguish from complex nano-structuring, this work focuses on the spin-related charge transfer and orbital interaction between catalysts and intermediates to accelerate catalytic reaction kinetics. Herein, we propose a simple magnetic-stimulation approach to rearrange spin electron occupation in noble-metal-free metal-organic frameworks (MOFs) with a feature of thermal-differentiated superlattice, in which the localized magnetic heating in periodic spatial distribution makes the spin flip occur at particular active sites, demonstrating a spin-dependent reaction pathway. As a result, the spin-rearranged Co0.8Mn0.2 MOF displays mass activities of 3514.7 A gmetal−1 with an overpotential of ~0.27 V, which is 21.1 times that of pristine MOF. Our findings provide a new paradigm for designing spin electrocatalysis and steering reaction kinetics.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yubing Yan

Developing efficient and low-cost replacements for noble metals as electrocatalysts for the oxygen evolution reaction (OER) remain a great challenge. Herein, we report a needle-like cobalt carbonate hydroxide hydrate (Co(CO3)0.5OH·0.11H2O) nanoarrays, which in situ grown on the surface of carbon cloth through a facile one-step hydrothermal method. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterizations demonstrate that the Co(CO3)0.5OH nanoarrays with high porosity is composed of numerous one-dimensional (1D) nanoneedles. Owing to unique needle-like array structure and abundant exposed active sites, the Co(CO3)0.5OH@CC only requires 317 mV of overpotential to reach a current density of 10 mA cm−2, which is much lower than those of Co(OH)2@CC (378 mV), CoCO3@CC (465 mV) and RuO2@CC (380 mV). For the stability, there is no significant attenuation of current density after continuous operation 27 h. This work paves a facile way to the design and construction of electrocatalysts for the OER.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Kaili Zhang ◽  
Xinhui Xia ◽  
Shengjue Deng ◽  
Yu Zhong ◽  
Dong Xie ◽  
...  

Abstract Controllable synthesis of highly active micro/nanostructured metal electrocatalysts for oxygen evolution reaction (OER) is a particularly significant and challenging target. Herein, we report a 3D porous sponge-like Ni material, prepared by a facile hydrothermal method and consisting of cross-linked micro/nanofibers, as an integrated binder-free OER electrocatalyst. To further enhance the electrocatalytic performance, an N-doping strategy is applied to obtain N-doped sponge Ni (N-SN) for the first time, via NH3 annealing. Due to the combination of the unique conductive sponge structure and N doping, the as-obtained N-SN material shows improved conductivity and a higher number of active sites, resulting in enhanced OER performance and excellent stability. Remarkably, N-SN exhibits a low overpotential of 365 mV at 100 mA cm−2 and an extremely small Tafel slope of 33 mV dec−1, as well as superior long-term stability, outperforming unmodified sponge Ni. Importantly, the combination of X-ray photoelectron spectroscopy and near-edge X-ray adsorption fine structure analyses shows that γ-NiOOH is the surface-active phase for OER. Therefore, the combination of conductive sponge structure and N-doping modification opens a new avenue for fabricating new types of high-performance electrodes with application in electrochemical energy conversion devices.


2018 ◽  
Vol 6 (14) ◽  
pp. 5678-5686 ◽  
Author(s):  
Kai-Li Yan ◽  
Jun-Feng Qin ◽  
Jia-Hui Lin ◽  
Bin Dong ◽  
Jing-Qi Chi ◽  
...  

Synthesis of Ag doped Co3O4 with different atomic ratios of Co2+/Co3+ and investigation of the effect of preferential exposure of Co2+ in Co3O4 on the acidic OER.


Sign in / Sign up

Export Citation Format

Share Document