scholarly journals Magnetic propulsion of colloidal microrollers controlled by electrically modulated friction

Soft Matter ◽  
2021 ◽  
Author(s):  
Ahmet F. Demirörs ◽  
Alex Stauffer ◽  
Carmen Lauener ◽  
Jacopo Cossu ◽  
Shivaprakash N. Ramakrishna ◽  
...  

Precise control over the motion of magnetically responsive particles in fluidic chambers is important for probing and manipulating tasks in prospective microrobotic and bio-analytical platforms.

2020 ◽  
Vol 22 (30) ◽  
pp. 17229-17235
Author(s):  
Yan-Dong Guo ◽  
Jin-Jie Wang ◽  
Hong-Li Zeng ◽  
Yu-Rong Yang ◽  
Xin-Xin Xu ◽  
...  

The spin polarization of electronic transmission could be electrically modulated from −100% to 100% at the single-molecule level.


Author(s):  
A. Engel ◽  
A. Holzenburg ◽  
K. Stauffer ◽  
J. Rosenbusch ◽  
U. Aebi

Reconstitution of solubilized and purified membrane proteins in the presence of phospholipids into vesicles allows their functions to be studied by simple bulk measurements (e.g. diffusion of differently sized solutes) or by conductance measurements after transformation into planar membranes. On the other hand, reconstitution into regular protein-lipid arrays, usually forming at a specific lipid-to-protein ratio, provides the basis for determining the 3-dimensional structure of membrane proteins employing the tools of electron crystallography.To refine reconstitution conditions for reproducibly inducing formation of large and highly ordered protein-lipid membranes that are suitable for both electron crystallography and patch clamping experiments aimed at their functional characterization, we built a flow-dialysis device that allows precise control of temperature and flow-rate (Fig. 1). The flow rate is generated by a peristaltic pump and can be adjusted from 1 to 500 ml/h. The dialysis buffer is brought to a preselected temperature during its travel through a meandering path before it enters the dialysis reservoir. A Z-80 based computer controls a Peltier element allowing the temperature profile to be programmed as function of time.


Author(s):  
M.V. Parthasarathy ◽  
C. Daugherty

The versatility of Low Temperature Field Emission SEM (LTFESEM) for viewing frozen-hydrated biological specimens, and the high resolutions that can be obtained with such instruments have been well documented. Studies done with LTFESEM have been usually limited to the viewing of small organisms, organs, cells, and organelles, or viewing such specimens after fracturing them.We use a Hitachi 4500 FESEM equipped with a recently developed BAL-TEC SCE 020 cryopreparation/transfer device for our LTFESEM studies. The SCE 020 is similar in design to the older SCU 020 except that instead of having a dedicated stage, the SCE 020 has a detachable cold stage that mounts on to the FESEM stage when needed. Since the SCE 020 has a precisely controlled lock manipulator for transferring the specimen table from the cryopreparation chamber to the cold stage in the FESEM, and also has a motor driven microtome for precise control of specimen fracture, we have explored the feasibility of using the LTFESEM for multiple-fracture studies of the same sample.


1989 ◽  
Vol 61 (03) ◽  
pp. 497-501 ◽  
Author(s):  
E Seifried ◽  
P Tanswell ◽  
D Ellbrück ◽  
W Haerer ◽  
A Schmidt

SummaryPharmacokinetics and systemic effects of recombinant tissue type plasminogen activator (rt-PA) were determined during coronary thrombolysis in 12 acute myocardial infarction patients using a consecutive intravenous infusion regimen. Ten mg rt-PA were infused in 2 minutes resulting in a peak plasma concentration (mean ±SD) of 3310±950 ng/ml, followed by 50 mg in 1 h and 30 mg in 1.5 h yielding steady state plasma levels of. 2210±470 nglml and 930±200 ng/ml, respectively. All patients received intravenous heparin. Total clearance of rt-PA was 380±74 ml/min, t,½α was 3.6±0.9 min and t,½β was 16±5.4 min.After 90 min, in plasma samples containing anti-rt-PA-IgG to inhibit in vitro effects, fibrinogen was decreased to 54%, plasminogen to 52%, α2-antiplasmin to 25%, α2-macroglobulin to 90% and antithrombin III to 85% of initial values. Coagulation times were prolonged and fibrin D-dimer concentrations increased from 0.40 to 2.7 μg/ml. It is concluded that pharmacokinetics of rt-PA show low interpatient variability and that its short mean residence time in plasma allows precise control of therapy. Apart from its moderate effect on the haemostatic system, rt-PA appears to lyse a fibrin pool in addition to the coronary thrombus.


2018 ◽  
Vol 24 (21) ◽  
pp. 2425-2431 ◽  
Author(s):  
Cao Wu ◽  
Zhou Chen ◽  
Ya Hu ◽  
Zhiyuan Rao ◽  
Wangping Wu ◽  
...  

Crystallization is a significant process employed to produce a wide variety of materials in pharmaceutical and food area. The control of crystal dimension, crystallinity, and shape is very important because they will affect the subsequent filtration, drying and grinding performance as well as the physical and chemical properties of the material. This review summarizes the special features of crystallization technology and the preparation methods of nanocrystals, and discusses analytical technology which is used to control crystal quality and performance. The crystallization technology applications in pharmaceutics and foods are also outlined. These illustrated examples further help us to gain a better understanding of the crystallization technology for pharmaceutics and foods.


2020 ◽  
Vol 16 ◽  
Author(s):  
Wei Liu ◽  
Shifeng Liu ◽  
Yunzhe Li ◽  
Peng Zhou ◽  
Qian ma

Abstract:: Surgery to repair damaged tissue, which is caused by disease or trauma, is being carried out all the time, and a desirable treatment is compelling need to regenerate damaged tissues to further improve the quality of human health. Therefore, more and more research focus on exploring the most suitable bionic design to enrich available treatment methods. 3D-printing, as an advanced materials processing approach, holds promising potential to create prototypes with complex constructs that could reproduce primitive tissues and organs as much as possible or provide appropriate cell-material interfaces. In a sense, 3D printing promises to bridge between tissue engineering and bionic design, which can provide an unprecedented personalized recapitulation with biomimetic function under the precise control of the composition and spatial distribution of cells and biomaterials. This article describes recent progress in 3D bionic design and the potential application prospect of 3D printing regenerative medicine including 3D printing biomimetic scaffolds and 3D cell printing in tissue engineering.


Author(s):  
Jennifer Fay

Much of Buster Keaton’s slapstick comedy revolves around his elaborate outdoor sets and the crafty weather design that destroys them. In contrast to D. W. Griffith, who insisted on filming in naturally occurring weather, and the Hollywood norm of fabricating weather in the controlled space of the studio, Keaton opted to simulate weather on location. His elaborately choreographed gags with their storm surges and collapsing buildings required precise control of manufactured rain and wind, along with detailed knowledge of the weather conditions and climatological norms on site. Steamboat Bill, Jr. (1928) is one of many examples of Keaton’s weather design in which characters find themselves victims of elements that are clearly produced by the off-screen director. Keaton’s weather design finds parallels in World War I strategies of creating microclimates of death (using poison gas) as theorized by Peter Sloterdijk.


Nano Letters ◽  
2015 ◽  
Vol 15 (8) ◽  
pp. 5427-5437 ◽  
Author(s):  
Martin Mayer ◽  
Leonardo Scarabelli ◽  
Katia March ◽  
Thomas Altantzis ◽  
Moritz Tebbe ◽  
...  

2012 ◽  
Vol 378 (1) ◽  
pp. 44-50 ◽  
Author(s):  
Koichiro Uto ◽  
Kazuya Yamamoto ◽  
Naoko Kishimoto ◽  
Masahiro Muraoka ◽  
Takao Aoyagi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document