Post-synthetic modification of CARDO-based materials: application in sour natural gas separation

2020 ◽  
Vol 8 (44) ◽  
pp. 23354-23367
Author(s):  
Ali Hayek ◽  
Abdulkarim Alsamah ◽  
Garba O. Yahaya ◽  
Eyad A. Qasem ◽  
Rashed H. Alhajry

Chemical modification enhances gas molecule permeation through polymeric membrane matrices by increasing the fractional free volume.

Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1329
Author(s):  
Maijun Li ◽  
Zhibo Zheng ◽  
Zhiguang Zhang ◽  
Nanwen Li ◽  
Siwei Liu ◽  
...  

To improve the interfacial compatibility of mixed matrix membranes (MMMs) for gas separation, microporous polyimide particle (AP) was designed, synthesized, and introduced into intrinsic microporous polyimide matrix (6FDA-Durene) to form “all polyimide” MMMs. The AP fillers showed the feature of thermal stability, similar density with polyimide matrix, high porosity, high fractional free volume, large microporous dimension, and interpenetrating network architecture. As expected, the excellent interfacial compatibility between 6FDA-Durene and AP without obvious agglomeration even at a high AP loading of 10 wt.% was observed. As a result, the CO2 permeability coefficient of MMM with AP loading as low as 5 wt.% reaches up to 1291.13 Barrer, which is 2.58 times that of the pristine 6FDA-Durene membrane without the significant sacrificing of ideal selectivity of CO2/CH4. The improvement of permeability properties is much better than that of the previously reported MMMs, where high filler content is required to achieve a high permeability increase but usually leads to significant agglomeration or phase separation of fillers. It is believed that the excellent interfacial compatibility between the PI fillers and the PI matrix induce the effective utilization of porosity and free volume of AP fillers during gas transport. Thus, a higher diffusion coefficient of MMMs has been observed than that of the pristine PI membrane. Furthermore, the rigid polyimide fillers also result in the excellent anti-plasticization ability for CO2. The MMMs with a 10 wt.% AP loading shows a CO2 plasticization pressure of 300 psi.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Dzeti Farhah Mohshim ◽  
Hilmi bin Mukhtar ◽  
Zakaria Man ◽  
Rizwan Nasir

In the last few decades, membrane technology has been a great attention for gas separation technology especially for natural gas sweetening. The intrinsic character of membranes makes them fit for process escalation, and this versatility could be the significant factor to induce membrane technology in most gas separation areas. Membranes were synthesized with various materials which depended on the applications. The fabrication of polymeric membrane was one of the fastest growing fields of membrane technology. However, polymeric membranes could not meet the separation performances required especially in high operating pressure due to deficiencies problem. The chemistry and structure of support materials like inorganic membranes were also one of the focus areas when inorganic membranes showed some positive results towards gas separation. However, the materials are somewhat lacking to meet the separation performance requirement. Mixed matrix membrane (MMM) which is comprising polymeric and inorganic membranes presents an interesting approach for enhancing the separation performance. Nevertheless, MMM is yet to be commercialized as the material combinations are still in the research stage. This paper highlights the potential promising areas of research in gas separation by taking into account the material selections and the addition of a third component for conventional MMM.


2014 ◽  
Vol 2 (33) ◽  
pp. 13309-13320 ◽  
Author(s):  
Jennifer R. Wiegand ◽  
Zachary P. Smith ◽  
Qiang Liu ◽  
Christopher T. Patterson ◽  
Benny D. Freeman ◽  
...  

Triptycene-containing polyimide membranes with tunable fractional free volume promoting fast gas transport and selective separations.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2745
Author(s):  
Fan Feng ◽  
Can-Zeng Liang ◽  
Ji Wu ◽  
Martin Weber ◽  
Christian Maletzko ◽  
...  

Although various polymer membrane materials have been applied to gas separation, there is a trade-off relationship between permeability and selectivity, limiting their wider applications. In this paper, the relationship between the gas permeation behavior of polyphenylsulfone(PPSU)-based materials and their chemical structure for gas separation has been systematically investigated. A PPSU homopolymer and three kinds of 3,3′,5,5′-tetramethyl-4,4′-biphenol (TMBP)-based polyphenylsulfone (TMPPSf) copolymers were synthesized by controlling the TMBP content. As the TMPPSf content increases, the inter-molecular chain distance (or d-spacing value) increases. Data from positron annihilation life-time spectroscopy (PALS) indicate the copolymer with a higher TMPPSf content has a larger fractional free volume (FFV). The logarithm of their O2, N2, CO2, and CH4 permeability was found to increase linearly with an increase in TMPPSf content but decrease linearly with increasing 1/FFV. The enhanced permeability results from the increases in both sorption coefficient and gas diffusivity of copolymers. Interestingly, the gas permeability increases while the selectivity stays stable due to the presence of methyl groups in TMPPSf, which not only increases the free volume but also rigidifies the polymer chains. This study may provide a new strategy to break the trade-off law and increase the permeability of polymer materials largely.


2007 ◽  
Vol 107 (2) ◽  
pp. 1039-1046 ◽  
Author(s):  
Roberto Recio ◽  
Ángel E. Lozano ◽  
Pedro Prádanos ◽  
Ángel Marcos ◽  
Fernando Tejerina ◽  
...  

2021 ◽  
Vol 86 ◽  
pp. 103740
Author(s):  
Maria S. Sergeeva ◽  
Nikita A. Mokhnachev ◽  
Dmitry N. Shablykin ◽  
Andrey V. Vorotyntsev ◽  
Dmitriy M. Zarubin ◽  
...  

2021 ◽  
Author(s):  
Charles Okafor ◽  
Patrick Verdin ◽  
Phill Hart

Abstract Downhole Natural Gas Separation Efficiency (NGSE) is flow regime dependent, and current analytical models in certain conditions lack accuracy. Downhole NGSE was investigated through 3D Computational Fluid Dynamics (CFD) transient simulations for pumping wells in the Churn flow regime. The Volume of Fluid (VOF) multiphase model was considered along with the k – ε turbulence model for most simulations. A mesh independence study was performed, and the final model results validated against experimental data, showing an average error of less than 6 %. Numerical simulation results showed that the steady state assumption used by current mathematical models for churn flow can be inaccurate. Several key parameters affecting the NGSE were identified, and suggestions for key improvements to the widely used mathematical formulations for viscous flow provided. Sensitivity studies were conducted on fluid/geometric parameters and operating conditions, to gain a better understanding of the influence of each parameter on NGSE. These are important results as they equip the ESP engineer with additional knowledge to maximise the NGSE from design stage to pumping operations.


Sign in / Sign up

Export Citation Format

Share Document