Engineering Bacterial Surface Interactions Using DNA as a Programmable Material

2022 ◽  
Author(s):  
Yuhan Kong ◽  
Qi Du ◽  
Juan Li ◽  
Hang Xing

The diverse surface interactions and functions of a bacterium play an important role in cell signaling, host infection, and colony formation. To understand and synthetically control biological functions of individual...

2021 ◽  
Vol 11 ◽  
Author(s):  
Yi Qiu ◽  
Peiyao Li ◽  
Zuping Zhang ◽  
Minghua Wu

Exosomes are natural nanoscale bilayer phospholipid vesicles that can be secreted by almost all types of cells and are detected in almost all types of body fluids. Exosomes are effective mediators of cell–cell signaling communication because of their ability to carry and transfer a variety of bioactive molecules, including non-coding RNAs. Non-coding RNAs have also been found to exert strong effects on a variety of biological processes, including tumorigenesis. Many researchers have established that exosomes encapsulate bioactive non-coding RNAs that alter the biological phenotype of specific target cells in an autocrine or a paracrine manner. However, the mechanism by which the producer cells package non-coding RNAs into exosomes is not well understood. This review focuses on the current research on exosomal non-coding RNAs, including the biogenesis of exosomes, the possible mechanism of sorting non-coding RNAs, their biological functions, and their potential for clinical application in the future.


2017 ◽  
Vol 12 (5) ◽  
pp. 05G201
Author(s):  
Sally L. McArthur ◽  
Katharina Maniura

FEBS Journal ◽  
2016 ◽  
Vol 284 (1) ◽  
pp. 27-41 ◽  
Author(s):  
Nikolaos A. Afratis ◽  
Dragana Nikitovic ◽  
Hinke A. B. Multhaupt ◽  
Achilleas D. Theocharis ◽  
John R. Couchman ◽  
...  

2012 ◽  
Vol 8 ◽  
pp. 1601-1609 ◽  
Author(s):  
Davide Esposito ◽  
Mattan Hurevich ◽  
Bastien Castagner ◽  
Cheng-Chung Wang ◽  
Peter H Seeberger

Sialic acid-containing glycans play a major role in cell-surface interactions with external partners such as cells and viruses. Straightforward access to sialosides is required in order to study their biological functions on a molecular level. Here, automated oligosaccharide synthesis was used to facilitate the preparation of this class of biomolecules. Our strategy relies on novel sialyl α-(2→3) and α-(2→6) galactosyl imidates, which, used in combination with the automated platform, provided rapid access to a small library of conjugation-ready sialosides of biological relevance.


2011 ◽  
Vol 94 (4) ◽  
pp. 431-450 ◽  
Author(s):  
Aaron P. Mosier ◽  
Nathaniel C. Cady

2021 ◽  
Vol 12 ◽  
Author(s):  
Seung-Ho Hwang ◽  
Hanhyeok Im ◽  
Sang Ho Choi

Vibrio vulnificus, a fulminating human pathogen, forms biofilms to enhance its survival in nature and pathogenicity during host infection. BrpR is the transcriptional regulator governing robust biofilm and rugose colony formation in V. vulnificus, but little is known about both the direct regulon of BrpR and the role of BrpR in regulation of downstream genes. In this study, transcript analyses revealed that BrpR is highly expressed and thus strongly regulates the downstream gene in the stationary and elevated cyclic di-GMP conditions. Transcriptome analyses discovered the genes, whose expression is affected by BrpR but not by the downstream regulator BrpT. Two unnamed adjacent genes (VV2_1626-1627) were newly identified among the BrpR regulon and designated as brpL and brpG in this study. Genetic analyses showed that the deletion of brpL and brpG impairs the biofilm and rugose colony formation, indicating that brpLG plays a crucial role in the development of BrpR-regulated biofilm phenotypes. Comparison of the colony morphology and exopolysaccharide (EPS) production suggested that although the genetic location and regulation of brpLG are distinct from the brp locus, brpABCDFHIJK (VV2_1574-1582), brpLG is also responsible for the robust EPS production together with the brp locus genes. Electrophoretic mobility shift assays and DNase I protection assays demonstrated that BrpR regulates the expression of downstream genes in distinct loci by directly binding to their upstream regions, revealing a palindromic binding sequence. Altogether, this study suggests that BrpR is a master regulator coordinating the expression of multiple loci responsible for EPS production and thus, contributing to the robust biofilm and rugose colony formation of V. vulnificus.


Author(s):  
Hongmei Luo ◽  
Dan Zhang ◽  
Fangfang Wang ◽  
Qiang Wang ◽  
Yu Wu ◽  
...  

Multiple myeloma, a plasma cell malignancy in the bone marrow, remains largely incurable with currently available therapeutics. In this study, we discovered that the activated-leukocyte-cell-adhesion-molecule (ALCAM) interacted with epidermal growth factor receptor (EGFR), and regulated myelomagenesis. ALCAM was a negative regulator of myeloma clonogenicity. ALCAM expression was positively correlated with patients' survival. ALCAM-knockdown myeloma cells displayed enhanced colony formation in the presence of bone marrow stromal cells (BMSCs). BMSCs supported myeloma colony formation by secreted epidermal growth factor (EGF), which bound with its receptor (EGFR) on myeloma cells and activated Mek/Erk cell signaling, PI3K/Akt cell signaling and hedgehog pathway. ALCAM could also bind with EGFR, block EGF from binding to EGFR, and abolish EGFR-initiated cell signaling. Hence, our study identifies ALCAM as a novel negative regulator of myeloma pathogenesis.


Biomolecules ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 427 ◽  
Author(s):  
Bernd Nürnberg ◽  
Sandra Beer-Hammer

Phosphatidylinositide 3-kinase (PI3K) γ is the only class IB PI3K member playing significant roles in the G-protein-dependent regulation of cell signaling in health and disease. Originally found in the immune system, increasing evidence suggest a wide array of functions in the whole organism. PI3Kγ occur as two different heterodimeric variants: PI3Kγ (p87) and PI3Kγ (p101), which share the same p110γ catalytic subunit but differ in their associated non-catalytic subunit. Here we concentrate on specific PI3Kγ features including its regulation and biological functions. In particular, the roles of its non-catalytic subunits serving as the main regulators determining specificity of class IB PI3Kγ enzymes are highlighted.


2016 ◽  
Vol 13 (115) ◽  
pp. 20150966 ◽  
Author(s):  
Rachel R. Bennett ◽  
Calvin K. Lee ◽  
Jaime De Anda ◽  
Kenneth H. Nealson ◽  
Fitnat H. Yildiz ◽  
...  

Monotrichous bacteria on surfaces exhibit complex spinning movements. Such spinning motility is often a part of the surface detachment launch sequence of these cells. To understand the impact of spinning motility on bacterial surface interactions, we develop a hydrodynamic model of a surface-bound bacterium, which reproduces behaviours that we observe in Pseudomonas aeruginosa , Shewanella oneidensis and Vibrio cholerae , and provides a detailed dictionary for connecting observed spinning behaviour to bacteria–surface interactions. Our findings indicate that the fraction of the flagellar filament adhered to the surface, the rotation torque of this appendage, the flexibility of the flagellar hook and the shape of the bacterial cell dictate the likelihood that a microbe will detach and the optimum orientation that it should have during detachment. These findings are important for understanding species-specific reversible attachment, the key transition event between the planktonic and biofilm lifestyle for motile, rod-shaped organisms.


Sign in / Sign up

Export Citation Format

Share Document