Alkali Metals salts of a Tetracyanopyridine (TCPy) Derivative: Structure Characterization and Luminescence Properties

CrystEngComm ◽  
2021 ◽  
Author(s):  
Sergey Chunikhin ◽  
Oleg V Ershov ◽  
Aleksandr V. Yatsenko ◽  
Viktor Tafeenko ◽  
Natalia Evgenievna Dmitrieva ◽  
...  

Five new salts of 3,4-dicyano-2-(dicyanomethylene)-5-methyl-6-phenyl-2H-pyridin-1-ide anion (TCPy−) with lithium, sodium, potassium, rubidium and cesium cations were synthesized and structurally characterized by the single-crystal X-ray diffraction method. Solid state photoluminescence characteristics...

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Durga Sankar Vavilapalli ◽  
Ambrose A. Melvin ◽  
F. Bellarmine ◽  
Ramanjaneyulu Mannam ◽  
Srihari Velaga ◽  
...  

AbstractIdeal sillenite type Bi12FeO20 (BFO) micron sized single crystals have been successfully grown via inexpensive hydrothermal method. The refined single crystal X-ray diffraction data reveals cubic Bi12FeO20 structure with single crystal parameters. Occurrence of rare Fe4+ state is identified via X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS). The lattice parameter (a) and corresponding molar volume (Vm) of Bi12FeO20 have been measured in the temperature range of 30–700 °C by the X-ray diffraction method. The thermal expansion coefficient (α) 3.93 × 10–5 K−1 was calculated from the measured values of the parameters. Electronic structure and density of states are investigated by first principle calculations. Photoelectrochemical measurements on single crystals with bandgap of 2 eV reveal significant photo response. The photoactivity of as grown crystals were further investigated by degrading organic effluents such as Methylene blue (MB) and Congo red (CR) under natural sunlight. BFO showed photodegradation efficiency about 74.23% and 32.10% for degrading MB and CR respectively. Interesting morphology and microstructure of pointed spearhead like BFO crystals provide a new insight in designing and synthesizing multifunctional single crystals.


Molecules ◽  
2017 ◽  
Vol 22 (7) ◽  
pp. 1182 ◽  
Author(s):  
Ji-Hun An ◽  
Alice Kiyonga ◽  
Woojin Yoon ◽  
Hyung Ryu ◽  
Jae-Sun Kim ◽  
...  

2014 ◽  
Vol 70 (a1) ◽  
pp. C1560-C1560
Author(s):  
Fumiko Kimura ◽  
Wataru Oshima ◽  
Hiroko Matsumoto ◽  
Hidehiro Uekusa ◽  
Kazuaki Aburaya ◽  
...  

In pharmaceutical sciences, the crystal structure is of primary importance because it influences drug efficacy. Due to difficulties of growing a large single crystal suitable for the single crystal X-ray diffraction analysis, powder diffraction method is widely used. In powder method, two-dimensional diffraction information is projected onto one dimension, which impairs the accuracy of the resulting crystal structure. To overcome this problem, we recently proposed a novel method of fabricating a magnetically oriented microcrystal array (MOMA), a composite in which microcrystals are aligned three-dimensionally in a polymer matrix. The X-ray diffraction of the MOMA is equivalent to that of the corresponding large single crystal, enabling the determination of the crystal lattice parameters and crystal structure of the embedded microcrytals.[1-3] Because we make use of the diamagnetic anisotropy of crystal, those crystals that exhibit small magnetic anisotropy do not take sufficient three-dimensional alignment. However, even for these crystals that only align uniaxially, the determination of the crystal lattice parameters can be easily made compared with the determination by powder diffraction pattern. Once these parameters are determined, crystal structure can be determined by X-ray powder diffraction method. In this paper, we demonstrate possibility of the MOMA method to assist the structure analysis through X-ray powder and single crystal diffraction methods. We applied the MOMA method to various microcrystalline powders including L-alanine, 1,3,5-triphenyl benzene, and cellobiose. The obtained MOMAs exhibited well-resolved diffraction spots, and we succeeded in determination of the crystal lattice parameters and crystal structure analysis.


2002 ◽  
Vol 57 (10) ◽  
pp. 1090-1100
Author(s):  
Franziska Emmerling ◽  
Caroline Röhr

AbstractThe title compounds were synthesized at a temperature of 700 °C via oxidation of elemental Bi with the hyperoxides AO2 or via reaction of the elemental alkali metals A with Bi2O3. Their crystal structures have been determined by single crystal x-ray diffraction. They are dominated by two possible surroundings of Bi by O, the ψ-trigonal-bipyramidal three (B) and the ψ-tetrahedral four (T) coordination. Cs6Bi4O9 (triclinic, spacegroup P1̄, a = 813.82(12), b = 991.60(14), c = 1213.83(18) pm, α = 103.658(2), β = 93.694(3), γ = 91.662(3)°, Z = 2) contains centrosymmetric chain segmentes [Bi8O18]12- with six three- (T) and two four-coordinated (B) Bi(III) centers. K9Bi5O13 (monoclinic, spacegroup P21/c, a = 1510.98(14), b = 567.59(5), c = 2685.6(2) pm, β = 111.190(2)°, Z = 4) is a mixed valence compound with isolated [BivO4]3- tetrahedra and chains [BiIII4O9]6- of two T and two B coordinated Bi. In the compounds A2Bi4O7 (A = Rb/Cs: monoclinic, C2/c, a = 2037.0(3) / 2130.6(12), b = 1285.5(2) / 1301.9(7), c = 1566.6(2) / 1605.6(9) pm, β = 94.783(3) / 95.725(9)°, Z = 8) ribbons [Bi4O6O2/2]2- are formed, which are condensed to form a three-dimensional framework.


2008 ◽  
Vol 63 (3) ◽  
pp. 339-341 ◽  
Author(s):  
Ajay Venugopal ◽  
Alexander Willner ◽  
Norbert W. Mitzel

The reaction of N,O-bis(trimethylsilyl)hydroxylamine with potassium hydride in pentane affords a product of the formula {K6[OSiMe3]4[ON(SiMe3)2]2}, resulting from deprotonation followed by N-O bond cleavage and 1,2-silylshift. The compound was characterised by elemental analysis and by single crystal X-ray diffraction. The aggregate consists of a K3O3 bis-cubane core, with N(SiMe3)2 groups at the oxygen atoms shared by the two cubes, andMe3Si groups attached to the four O vertices. Two weak K···N interactions are also detected in the solid state structure.


1980 ◽  
Vol 33 (2) ◽  
pp. 313 ◽  
Author(s):  
PR Jefferies ◽  
BW Skelton ◽  
B Walter ◽  
AH White

Following the suggestion made earlier, on the basis of solution spectroscopy, that a number of eriostyl/nitrobenzoate compounds form charge-transfer self-complexes, a number of these have been investigated structurally by single-crystal X-ray diffraction methods in order to ascertain the presence or otherwise of such interactions in the solid state. The substances thus studied were eriostyl 3,5-dinitrobenzoate (1), eriostyl p-nitrobenzoate (2), tetrahydroeriostyl 3,5-dinitrobenzoate (3), and eriostemyl 3,5-dinitrobenzoate (4);* structure determinations in all cases, although displaying the presence of strong charge-transfer interactions from the two moieties of each molecule, show that the interactions in the solid state are intermolecular in nature.


1995 ◽  
Vol 50 (4) ◽  
pp. 699-701 ◽  
Author(s):  
Norbert W. Mitzel ◽  
Jürgen Riede ◽  
Klaus Angermaier ◽  
Hubert Schmidbaur

The solid-state structure of N,N-dibenzylhydroxylamine (1) has been determined by single crystal X-ray diffraction. The compound crystallizes in the monoclinic space group P 21/n with four formula units in the unit cell. N,N-dibenzylhydroxylamine dimerizes to give N2O2H2 sixmembered rings as a result of the formation of two hydrogen bonds O - H ··· N in the solid state.


1976 ◽  
Vol 20 ◽  
pp. 53-62
Author(s):  
Alan D. Mighell

Single crystal X-ray diffraction methods for the study of crystalline materials, although reliable, have been, mainly confined to the academic laboratory because of the rather lengthy and complex procedure necessary to determine the unit cell and the space group. The situation has now changed. Several recent developments give single-crystal methods considerable potential for routine Industrial use. They Include growth of the data base, advances in lattice theory, and automation of the single-crystal X-ray diffractometer. To identify an unknown, one can start with a single crystal, mount it on the diffractometer, determine a refined primitive cell, reduce the cell, and check against a file of known reduced cells. The entire procedure can be automated. As a result, the single-crystal X-ray diffraction method can now complement the powder method for the routine analysis of crystalline materials.


2001 ◽  
Vol 691 ◽  
Author(s):  
Michael J. Ferguson ◽  
Igor L. Moudrakovski ◽  
Christopher I. Ratcliffe ◽  
John S. Tse

ABSTRACTThe Structure I type binary metal clathrates of K/Si, Rb/Si and Cs/Sn have been synthesised and studied by powder X-ray diffraction and solid state NMR. Rietveld analysis shows that in all three materials some of the cages are empty, and that in the Cs/Sn clathrate there are vacancies in the Sn framework. The NMR results yield Knight shifts for 29Si and 39K and confirm that the Cs/Sn clathrate is not conducting. Many of the features of the NMR spectra can be understood in terms of the distributions of atom vacancies.


Sign in / Sign up

Export Citation Format

Share Document