Comparing study of the effect of the CeO2-based carrier materials on the total oxidation of CO, methane, and propane over RuO2

Author(s):  
Zheng Wang ◽  
Omeir Khalid ◽  
Wei Wang ◽  
Yu Wang ◽  
Tim Weber ◽  
...  

The effect of the carrier material on the intrinsic activity of three catalytic total oxidation reactions, namely CO oxidation as well as methane and propane combustion over highly dispersed RuO2...

2013 ◽  
Vol 805-806 ◽  
pp. 1297-1301 ◽  
Author(s):  
Shang Hong Zeng ◽  
Tian Jia Chen ◽  
Hai Quan Su ◽  
Quan Man ◽  
Wen Li Zhang

The CeO2/CuO catalysts were synthesized by the hydrothermal method. The study shows that the particle-like CeO2 can self-assemble into the rod-like CeO2 during the hydrothermal procedure and the rods of CeO2 become shorter with the decrease of Ce/Cu molar ratio. The highly dispersed CuO is favorable for CO oxidation at lower temperature, and the bulk CuO can help CO oxidation at higher temperature due to the limitation of reduction.


2019 ◽  
Author(s):  
Wugen Huang ◽  
qingfei liu ◽  
Zhiwen Zhou ◽  
Yangsheng Li ◽  
Yong Wang ◽  
...  

Despite tremendous importance in catalysis, the design and improvement of the oxide- metal interface has been hampered by the limited understanding on the nature of interfacial sites, as well as the oxide-metal interaction (OMI). Through the construction of well-defined Cu<sub>2</sub>O-Pt, Cu<sub>2</sub>O-Ag, Cu<sub>2</sub>O-Au interfaces, we found that Cu<sub>2</sub>O Nanostructures (NSs) on Pt exhibit much lower thermal stability than on Ag and Au, although they show the same surface and edge structures, as identified by element-specific scanning tunneling microscopy (ES-STM) images. The activities of the Cu<sub>2</sub>O-Pt and Cu<sub>2</sub>O-Au interfaces for CO oxidation were further compared at the atomic scale and showed in general that the interface with Cu<sub>2</sub>O NSs could annihilate the CO-poisoning problem suffered by Pt group metals and enhance the interaction with O<sub>2</sub>, which is a limiting step for CO oxidation catalysis on group IB metals. While both interfaces could react with CO at room temperature, the OMI was found to determine the reactivity of supported Cu<sub>2</sub>O NSs by 1) tuning the activity of interfacial oxygen atoms and 2) stabilizing oxygen vacancies or vice versa, the dissociated oxygen atoms at the interface. Our study provides new insight for OMI and for the development of Cu-based catalysts for low temperature oxidation reactions.


2019 ◽  
Author(s):  
Wugen Huang ◽  
Yangsheng Li ◽  
Yong Wang ◽  
Yunchuan Tu ◽  
Dehui Deng ◽  
...  

Despite tremendous importance in catalysis, the design and improvement of the oxide- metal interface has been hampered by the limited understanding on the nature of interfacial sites, as well as the oxide-metal interaction (OMI). Through the construction of well-defined Cu<sub>2</sub>O-Pt, Cu<sub>2</sub>O-Ag, Cu<sub>2</sub>O-Au interfaces, we found that Cu<sub>2</sub>O Nanostructures (NSs) on Pt exhibit much lower thermal stability than on Ag and Au, although they show the same surface and edge structures, as identified by element-specific scanning tunneling microscopy (ES-STM) images. The activities of the Cu<sub>2</sub>O-Pt and Cu<sub>2</sub>O-Au interfaces for CO oxidation were further compared at the atomic scale and showed in general that the interface with Cu<sub>2</sub>O NSs could annihilate the CO-poisoning problem suffered by Pt group metals and enhance the interaction with O<sub>2</sub>, which is a limiting step for CO oxidation catalysis on group IB metals. While both interfaces could react with CO at room temperature, the OMI was found to determine the reactivity of supported Cu<sub>2</sub>O NSs by 1) tuning the activity of interfacial oxygen atoms and 2) stabilizing oxygen vacancies or vice versa, the dissociated oxygen atoms at the interface. Our study provides new insight for OMI and for the development of Cu-based catalysts for low temperature oxidation reactions.


Nanoscale ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 117-123
Author(s):  
Zeyi Guo ◽  
Qi You ◽  
Lianghao Song ◽  
Guoxin Sun ◽  
Guozhu Chen ◽  
...  

Highly dispersed ultrafine platinum particles anchored onto mesoporous CeO2 were successfully prepared by coordinating Pt ions with –NH2 in NH2-Ce-MOFs.


2017 ◽  
Vol 19 (1) ◽  
pp. 196-203 ◽  
Author(s):  
Xizi Cao ◽  
Mengyi Chen ◽  
Jun Ma ◽  
Baoqi Yin ◽  
Xiaopeng Xing

Oxidation of CO by the atomic oxygen on AgnO− (n = 1–8) forms free or chemically bonded CO2.


2011 ◽  
Vol 89 (8) ◽  
pp. 939-947 ◽  
Author(s):  
Irena Mihailova ◽  
Dimitar Mehandjiev

Two calcium–cobalt silicates were synthesized in which cobalt occupies different structural positions. The crystal phases belong to two main structural silicate types. In the Co-åkermanite structure (Ca2CoSi2O7), cobalt cations take tetrahedral coordination toward oxygen atoms. In the Co-pyroxene structure of CaCoSi2O6, cobalt displays octahedral coordination. Ca2CoSi2O7 was prepared by solid-phase synthesis and CaCoSi2O6 was prepared by sol–gel method. The synthesis of the phases was confirmed by XRD, FTIR, and EPR data. On the basis of the XPS analysis, it can be concluded that Co2+ cations exist in the studied silicates. Thus, it is possible to study the catalytic activity of two silicate phases containing Co2+ cations in different coordinations: tetrahedral and octahedral. It was found that cobalt silicates with crystal structures corresponding to pyroxene and åkermanite possess catalytic activity in the reactions of complete oxidation of CO and toluene. Co-pyroxene exhibits higher catalytic activity than Co-åkermanite, but the higher cobalt content on the surface of Co-pyroxene should also be taken into account. Then, it turns out that catalytically active complexes with Со2+ ions in tetrahedral coordination are more efficient than those with such ions in octahedral coordination when equal concentrations of cobalt were used on the surface of the catalysts.


2021 ◽  
Vol 10 (4) ◽  
pp. 39-45
Author(s):  
Phuong Pham Thi Mai ◽  
Hoan Nguyen Quoc ◽  
Quan Do Quoc ◽  
Hung Nguyen Thanh

In this paper, the Au doped Mn1Co9Ox was investigated for total oxidation of CO. The sol-gel method was applied to prepare this catalyst and some modern analysis methods as XRD, EPR, TPx, SEM were utilized to characterize its properties. The XRD patterns showed only Co3O4 phase without any peaks belonging to Mn or Au. However, the presence of Au and Mn was confirmed by EPR and O2-TPD results. With the aim to further apply catalyst in reality, the Au doped Mn1Co9Ox was deposited on ceramic by sol-gel, wet impregnation. The SEM images displayed the successful coating of active phase on substrate. However, the complete catalyst system didn’t have the high activity in total CO oxidation like the catalyst powder because of large agglomerations on coatings.


2021 ◽  
Vol 11 (1) ◽  
pp. 118-122
Author(s):  
Chuyen Phan Thi ◽  
Hang Tran Thi Thanh ◽  
Phong Pham Nam ◽  
Ha Vu Thi Thu

Au, Pt supported on graphene aerogel catalysts (PtAu/rGOA) with molar ratio of Pt and Au of 1:1, and total metal concentration of 5 % were successfully synthesized by hydrothermal method.  The obtained catalysts were characterized by Raman, XRD, XPS, HR-TEM, BET. It revealed that Au and Pt nanoparticles with average size of 3 – 5 nm were highly dispersed on aerogel graphene. The activity of these catalysts was tested  in CO oxidation. The results showed that the conversion of CO at ambient temperature was 100% during 25 minutes. Accordingly, PtAu/rGOA could be considered as a potential catalysts for CO oxidation at low temperature.


2018 ◽  
Vol 62 (1-4) ◽  
pp. 397-402
Author(s):  
E. Genty ◽  
H. Dib ◽  
J. Brunet ◽  
C. Poupin ◽  
S. Siffert ◽  
...  

2006 ◽  
Vol 113 (3-4) ◽  
pp. 182-186 ◽  
Author(s):  
Svetlana Ivanova ◽  
Corinne Petit ◽  
Véronique Pitchon

Sign in / Sign up

Export Citation Format

Share Document