Reversible addition of tin(ii) amides to nitriles

2022 ◽  
Author(s):  
Tomáš Chlupatý ◽  
Kristýna Brichová ◽  
Maksim A. Samsonov ◽  
Zdeňka Růžičková ◽  
Aleš Růžička
Keyword(s):  

Amidotin(ii) benzamidinates were prepared via addition of Sn[N(SiMe3)2]2 to mono-, di- and trinitriles. A reversible addition of [PhC(NSiMe3)2]SnN(SiMe3)2 with an excess of benzonitrile to its homoleptic [PhC(NSiMe3)2]2Sn was studied by NMR and DFT.

2010 ◽  
Vol 11 (4) ◽  
pp. 1052-1059 ◽  
Author(s):  
Stacey Kirkland-York ◽  
Yilin Zhang ◽  
Adam E. Smith ◽  
Adam W. York ◽  
Faqing Huang ◽  
...  

Author(s):  
Tatyana S. Koptseva ◽  
Vladimir G. Sokolov ◽  
Sergey Yu. Ketkov ◽  
Elena A. Rychagova ◽  
Anton V. Cherkasov ◽  
...  

2021 ◽  
Author(s):  
Siva Ponnupandian ◽  
Prantik Mondal ◽  
Thomas Becker ◽  
Richard Hoogenboom ◽  
Andrew B Lowe ◽  
...  

This investigation reports the preparation of a tailor-made copolymer of furfuryl methacrylate (FMA) and trifluoroethyl methacrylate (TFEMA) via reversible addition-fragmentation chain transfer (RAFT) polymerization. The furfuryl groups of the copolymer...


e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 317-327
Author(s):  
Chenliang Shi ◽  
Ling Lin ◽  
Yukun Yang ◽  
Wenjia Luo ◽  
Maoqing Deng ◽  
...  

AbstractThe influence of density of amino groups, nanoparticles dimension and pH on the interaction between end-functionalized polymers and nanoparticles was extensively investigated in this study. PS–NH2 and H2N–PS–NH2 were prepared using reversible addition–fragmentation chain transfer polymerization and atom transfer radical polymerization. Zero-dimensional carbon dots with sulfonate groups, one-dimensional cellulose nanocrystals with sulfate groups and two-dimensional graphene with sulfonate groups in the aqueous phase were added into the toluene phase containing the aminated PS. The results indicate that aminated PS exhibited the strongest interfacial activity after compounding with sulfonated nanoparticles at a pH of 3. PS ended with two amino groups performed better in reducing the water/toluene interfacial tension than PS ended with only one amino group. The dimension of sulfonated nanoparticles also contributed significantly to the reduction in the water/toluene interfacial tension. The minimal interfacial tension was 4.49 mN/m after compounding PS–NH2 with sulfonated zero-dimensional carbon dots.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1164
Author(s):  
Angeliki Chroni ◽  
Thomas Mavromoustakos ◽  
Stergios Pispas

The focus of this study is the development of highly stable losartan potassium (LSR) polymeric nanocarriers. Two novel amphiphilic poly(n-butyl acrylate)-block-poly(oligo(ethylene glycol) methyl ether acrylate) (PnBA-b-POEGA) copolymers with different molecular weight (Mw) of PnBA are synthesized via reversible addition fragmentation chain transfer (RAFT) polymerization, followed by the encapsulation of LSR into both PnBA-b-POEGA micelles. Based on dynamic light scattering (DLS), the PnBA30-b-POEGA70 and PnBA27-b-POEGA73 (where the subscripts denote wt.% composition of the components) copolymers formed micelles of 10 nm and 24 nm in water. The LSR-loaded PnBA-b-POEGA nanocarriers presented increased size and greater mass nanostructures compared to empty micelles, implying the successful loading of LSR into the inner hydrophobic domains. A thorough NMR (nuclear magnetic resonance) characterization of the LSR-loaded PnBA-b-POEGA nanocarriers was conducted. Strong intermolecular interactions between the biphenyl ring and the butyl chain of LSR with the methylene signals of PnBA were evidenced by 2D-NOESY experiments. The highest hydrophobicity of the PnBA27-b-POEGA73 micelles contributed to an efficient encapsulation of LSR into the micelles exhibiting a greater value of %EE compared to PnBA30-b-POEGA70 + 50% LSR nanocarriers. Ultrasound release profiles of LSR signified that a great amount of the encapsulated LSR is strongly attached to both PnBA30-b-POEGA70 and PnBA27-b-POEGA73 micelles.


Coatings ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 348 ◽  
Author(s):  
Baolei Liu ◽  
Mingqian Wang ◽  
Ying Liang ◽  
Zhicheng Zhang ◽  
Guohong Ren ◽  
...  

This work launches the first-ever report on the fabrication of waterborne epoxy-graphene oxide (GO) coatings (WEGC) using a block polymer as a dispersant of GO, wherein the block polymer was synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization of acrylic acid and oligo(ethylene glycol) methyl ether methacrylate A number of analytical techniques, such as Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), thermo gravimetric analysis (TGA), and salt spray tests, were utilized to explore the morphology and performance of the WEGC. It was confirmed that POEGMA950-b-PAA attached to the GO nanosheets, increasing the integral space of the sheets. Modified GO (MGO) layers were well-dispersed in the epoxy matrix through the formation of a GO-dispersant-epoxy ternary molecular structure. Furthermore, the presence of MGO substantially influenced the thermal properties, mechanical properties, and anticorrosion performance of the WEGC. TGA, salt spray tests, and pull-off testsshowed that 0.5 wt.% MGO content achieved the greatest improvement in the evaluated properties.


Sign in / Sign up

Export Citation Format

Share Document