Green synthesis of CuO/rGO nanocomposite using Terminalia Arjuna bark extract and its catalytic activity for purification of water

2022 ◽  
Author(s):  
Vanita Kumari ◽  
Prit Pal Singh ◽  
Sandeep Kaushal

Biogenic synthesis of CuO/rGO nanocomposites was carried out successfully using Terminalia Arjuna bark extract. Various analytical methods such as UV-visible (UV-Vis), Fourier transform infrared (FTIR), X-ray diffraction (XRD) analysis, Field...

2021 ◽  
Vol 21 (11) ◽  
pp. 5673-5680
Author(s):  
Muthukrishnan Francklin Philips ◽  
Jothirathinam Thangarathinam ◽  
Jayakumar Princy ◽  
Cyril Arockiaraj Crispin Tina ◽  
Cyril Arockiaraj Crispin Tina ◽  
...  

The authors report the preparation of the nanocomposite comprising of vanadium pentoxide (V2O5) and selenium (Se) nanoparticles and functionalized multiwalled carbon nanotubes (MWCNTs) (V2O5@Se NPs/MWCNTs). Since Se NPs possesses extraordinary physicochemical properties including larger surface area with higher adsorption capacity, V2O5 NPs were adsorbed onto Se NPs surface through physisorption process (designated as V2O5@Se NPs). The nanocomposite synthesized hydrothermally was evaluated for its antimicrobial activity. The morphology and microstructure of the nanocomposite were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis, respectively. Fourier transform infrared spectroscopy (FTIR) and UV-Visible spectroscopy (UV-Vis) were employed to analyze the spectral properties of nanocomposite. The microbicidal efficacy of nanocomposite was tested against Gram-negative (G-)ZGram-positive (G+) bacteria and fungus. This is the first report on the synthesis of V2O5@Se NPs/MWCNTs nanocomposites by chemical method that showed microbicidal effect on micro-organisms. The thiol (-SH) units facilitates the enrichment of V2O5@Se NPs onto MWCNTs surface. Ultimately, it reflects on the significant antimicrobial activity of V2O5@Se NPs/MWCNTs.


2018 ◽  
Vol 64 (4) ◽  
pp. 381
Author(s):  
Muhammad Tufiq Jamil ◽  
Javed Ahmad ◽  
Syed Hamad Bukhari ◽  
Murtaza Saleem

Rare earth nano sized pollycrystalline orthoferrites and orthocromites ReT mO3 (Re = La, Nd, Gd, Dy, Y and T m = Fe, Cr) have been synthesized by sol-gel auto combustion citrate method. The samples have been characterized by means of X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), and UV-visible spectroscopy. The samples are single phase as confirmed by XRD analysis and correspond to the orthorhombic crystal symmetry with space group pbnm. Debye Scherer formula and Williamson Hall analysis have been used to calculate the average grain size which is consistent with that of determined from SEM analysis and varied between 25-75 nm. The elemental compositions of all samples have been checked by EDX analysis. Different crystallographic parameters are calculated with strong structural correlation among Re and Tm sites. The optical energy band gap has been calculated by using Tauc relation estimated to be in the range of 1.77 - 1.87 eV and 2.77 - 3.14 eV, for ReFeO3 and ReCrO3, respectively.


2015 ◽  
Vol 35 ◽  
pp. 21-26 ◽  
Author(s):  
Susmita Das ◽  
Vimal Chandra Srivastava

Metal oxide nanocomposite (ZnO-CuO) was successfully synthesized by one step homogeneous coprecipitation method and further characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron micrograph (SEM), X-ray diffraction analysis (XRD) and UV-visible diffuse reflectance spectra. XRD analysis exhibited presence of pure copper oxide and zinc oxide within the nanocomposite. SEM analysis indicated that the ZnO-CuO nanocomposite was consisted of flower shaped ZnO along with leaf shaped CuO. Photocatalytic activity of nanocomposite was evaluated in terms of degradation of methylene blue (MB) dye solution under ultra-violet radiation. Results showed that the photocatalytic efficiency of ZnO-CuO nanocomposite was higher than its individual pure oxides (ZnO or CuO).


Crystals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1144
Author(s):  
Konda Shireesha ◽  
Thida Rakesh Kumar ◽  
Tumarada Rajani ◽  
Chidurala Shilpa Chakra ◽  
Murikinati Mamatha Kumari ◽  
...  

This paper describes the synthesis and characterization of NiMgOH-rGO nanocomposites made using a chemical co-precipitation technique with various reducing agents (e.g., NaOH and NH4OH) and reduced graphene oxide at 0.5, 1, and 1.5 percent by weight. UV-visible spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, a particle size analyzer, and cyclic voltammetry were used to characterize the composite materials. The formation of the NiMgOH-rGO nanocomposite with crystallite sizes in the range of 10–40 nm was inferred by X-ray diffraction patterns of materials, which suggested interlayers of Ni(OH)2 and Mg(OH)2. The interactions between the molecules were detected using Fourier-transform infrared spectroscopy, while optical properties were studied using UV-visible spectroscopy. A uniform average particle size distribution in the range of 1–100 nm was confirmed by the particle size analyzer. Using cyclic voltammetry and galvanostatic charge/discharge measurements in a 6 M KOH solution, the electrochemical execution of NiMgOH-rGO nanocomposites was investigated. At a 1 A/g current density, the NiMgOH-rGO nanocomposites prepared with NH4OH as a reducing agent had a higher specific capacitance of 1977 F/g. The electrochemical studies confirmed that combining rGO with NiMgOH increased conductivity.


2011 ◽  
Vol 396-398 ◽  
pp. 1313-1317
Author(s):  
Li Min Li ◽  
San Kui Xu ◽  
Xiao Dong Wang ◽  
Nan Nan Guo ◽  
Yun Lai Su ◽  
...  

CuO/γ-Al2O3 catalysts were prepared by supercritical CO2 (SC-CO2) impregnation method. The preparation was carried out in SC-CO2 with Cu(NO3)2 as precursor, methanol as assistant solvent, and γ-Al2O3 as support. The effects of impregnation parameters such as temperature and pressure of SC-CO2, impregnation time, ratio of precursor to support, and amount of assistant solvent on catalyst preparation were investigated. The as-prepared catalysts were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis and compared to that prepared by the conventional impregnation method. The SC-CO2 impregnation method provided higher adsorption rate, larger adsorption quantity, more homogeneous dispersion of precursor, and stronger interaction between precursor and support. The catalytic degradation of methylene blue (MB) was used as probe reaction to estimate the catalytic activity of two catalysts prepared by two methods. The catalyst prepared by SC-CO2 impregnation method exhibits significantly improved catalytic activity. These results show that the inorganic metallic reagents as precursor with assistant solvent can be used as an alternative for the organometallic precursors in SC-CO2 impregnation method.


2019 ◽  
Vol 2019 ◽  
pp. 1-5 ◽  
Author(s):  
Jun-Yu Chen ◽  
Ji-Kang Yan ◽  
Guo-You Gan

TiO2 doped with different amounts of Cu2+ ions (from 0 to 3 mol%) was synthesized by sol-gel method. The samples were characterized by X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR). The XRD analysis showed that the Cu-doped TiO2 samples exhibit anatase and rutile phases. The lattice parameters remain unchanged, independent of Cu2+ content. Diameter of TiO2 increased significantly with increasing concentrations of Cu2+. The investigated results indicate that a greater portion of the Cu2+ ions are well incorporated into the anatase and rutile TiO2 lattices. The stretching vibration frequencies of the interatomic bonds were calculated by the electronegativity principle. The calculated data were compared with infrared spectra. The results show that in the rutile and anatase phases, O atoms in the TiO2 lattice and some interstitial Cu atoms form Cu-O bond, and other substitutional Cu that replaces Ti atoms in TiO2 lattice form Cu-O bond with O atoms in the TiO2 lattice.


Catalysts ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 728 ◽  
Author(s):  
Gheorghița Mitran ◽  
Florentina Neațu ◽  
Ștefan Neațu ◽  
Mihaela M. Trandafir ◽  
Mihaela Florea

The catalytic activity of a series of vanadium aluminophosphates catalysts prepared by sol-gel method followed by combustion of the obtained gel was evaluated in glycerol conversion towards methanol. The materials were characterized by several techniques such as X-ray diffraction (XRD), UV-vis, Fourier-transform infrared (FTIR), Raman and X-ray photoelectron (XPS) spectroscopies. The amount of vanadium incorporated in aluminophosphates framework played an important role in the catalytic activity, while in the products distribution the key role is played by the vanadium oxidation state on the surface. The sample that contains a large amount of V4+ has the highest selectivity towards methanol. On the sample with the lowest vanadium loading the oxidation path to dihydroxyacetone is predominant. The catalyst with higher content of tetrahedral isolated vanadium species, such V5APO, is less active in breaking the C–C bonds in the glycerol molecule than the one containing polymeric species.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Gang Xin ◽  
Yali Meng

Graphitic carbon nitride (g-C3N4) was synthesized at 520°C by the pyrolysis of cyanamide, dicyandiamide, and melamine. The samples were characterized by X–ray diffraction (XRD), UV-visible diffuse reflectance spectra, Fourier transform infrared spectroscopy (FT-IR), and elemental analyzer. The photocatalytic activity of g-C3N4was evaluated by the photodegrading experiments of methylene blue (MB). The results indicated that g-C3N4. A photocatalytic mechanism presumed the MB photodegradation over the C3N4photocatalyst is attributed to photogenerated electron impelled multistep reduction of O2.


2016 ◽  
Vol 19 (2) ◽  
pp. 63-67
Author(s):  
Slamet Karim ◽  
Pardoyo Pardoyo ◽  
Agus Subagio

Energi celah pita yang lebar dari semikonduktor TiO2 yang setara dengan cahaya ultraviolet (l<380 nm) membatasi aplikasi fotokatalitik hanya terbatas pada daerah ultraviolet dan tidak pada daerah cahaya tampak (l = 400 nm–700 nm). Pada penelitian ini dilakukan sintesis TiO2 teremban nitrogen yang dipreparasi melalui metode sol-gel. Prekursor TiCl4 digunakan sebagai sumber titanium dioksida dan CO(NH2)2 sebagai sumber nitrogen dan divariasi pada jumlah konsentrasi N dengan variasi 20 g, 30 g, 40 g dan 50 g. Refluks dilakukan pada suhu 100oC selama 7 jam dilanjutkan dengan pengeringan selama 3 jam pada suhu 100oC, dan kalsinasi pada suhu 500oC selama 7 jam . Karakterisasi N-doped TiO2 dilakukan menggunakan X-ray Diffraction (XRD), Fourier Transform–Infra Red spectroscopy (FTIR), dan UV- Visible diffuse reflectance spectra (UV-Vis DRS). Berdasarkan data XRD diketahui bahwa kristal N- doped TiO2 berstruktur anatase dengan indeks Miller 101. Spektra FTIR menunjukkan pergeseran serapan vibrasi O-Ti-O pada bilangan gelombang 400-1050 cm-1, diperkirakan sebagai akibat terbentuknya ikatan N-Ti-O. Spektrum DRS-UV–tampak menunjukkan penurunan energi celah pita dari TiO2 yakni 3,2 eV. Dapat disimpulkan bahwa penambahan konsentrasi nitrogen mengakibatkan penurunan energi celah pita, pada variasi 20g sebesar 3,12 eV, 30 g sebesar 3,09 eV, 40 g sebesar 3,082 eV, dan 50 g sebesar 3,08 eV.


Sign in / Sign up

Export Citation Format

Share Document