scholarly journals Towards efficient dye degradation and bactericidal behavior of Mo-doped La2O3 nanostructures

2022 ◽  
Author(s):  
Muhammad Ikram ◽  
Namra Abid ◽  
Ali Haider ◽  
Anwar Ul-Hamid ◽  
Junaid Haider ◽  
...  

In this study, different concentrations (0, 0.02, 0.04 and 0.06 wt. %) of Mo doped onto La2O3 nanostructures were synthesized using one-pot co-precipitation process. The aim was to study the...

2021 ◽  
Vol 6 (23) ◽  
pp. 5771-5777
Author(s):  
Hongjuan Wang ◽  
Chenghe Hua ◽  
Meng Lan ◽  
Nan Zheng ◽  
Xiaoli Dong ◽  
...  

2011 ◽  
Author(s):  
Darminto ◽  
Machida N. Cholishoh ◽  
Feby A. Perdana ◽  
Malik A. Baqiya ◽  
Mashuri ◽  
...  

2009 ◽  
Vol 79-82 ◽  
pp. 505-508
Author(s):  
Li Li ◽  
H. Zhao ◽  
Wei Wang ◽  
F.F. Nie

The magnetic Fe3O4 nanoparticles had been synthesized by co-precipitation process and surface treatment by silane coupling agent (KH570). The magnetic Fe3O4/PMMA nanocomposite films were prepared by blend method, and the chemical structure, mechanical properties, surface morphology and the biocompatibility of the nanocomposite films were studied in this work. The magnetic Fe3O4 nanoparticles were well dispersed in the Fe3O4/PMMA nanocomposite films. The strength of the nanocomposite films, as well as the strain, decreased first and then increased with the increasing of the nanoparticles. The hemolytic ratio indicated that the nanocomposite films had a better blood compatibility.


RSC Advances ◽  
2016 ◽  
Vol 6 (54) ◽  
pp. 49228-49235 ◽  
Author(s):  
Chengwei Gao ◽  
Baojun Li ◽  
Ning Chen ◽  
Jie Ding ◽  
Qiang Cai ◽  
...  

Fe3O4/HNT@rGO composite (FHGC) was fabricated via a facile co-precipitation process, followed by heat treatment. For RhB and As5+removal, the high performance and easy separation of FHGC highlight its potential application in water treatment.


2018 ◽  
Vol 5 (2) ◽  
pp. 025040 ◽  
Author(s):  
S Jagadhesan ◽  
N Senthilkumar ◽  
V Senthilnathan ◽  
T S Senthil

2016 ◽  
Vol 675-676 ◽  
pp. 69-72
Author(s):  
Krisana Chongsri ◽  
Wanichaya Mekprasart ◽  
Wisanu Pecharapa

In this work, we reported the preparation of F-doped ZnO nanoparticles by facile precipitation process using zinc nitrate and ammonium fluoride as starting precursors for Zn and F, respectively dissolved in deionized water. The precursor solution was prepared at various fluoride composition ranging from 1-5 wt%. The as-precipitated powders were calcined at different temperature from 500 °C to 700 °C for 2 h. Effect of calcination temperature and fluoride concentration on structural, morphologies, optical and electrical properties were investigated by X-ray diffraction (XRD), scanning electron microscope (SEM), UV-Vis spectroscopy, respectively. XRD results indicated the complete formation of hexagonal wurtzite structure of ZnO. SEM micrographs showed the agglomeration for each sample that noticeably influenced by fluoride content.


2003 ◽  
Vol 47 (1) ◽  
pp. 41-48 ◽  
Author(s):  
J. Duan ◽  
N.J.D. Graham ◽  
F. Wilson

The coagulation of a model seawater-humic acid solution with a hydrolysis metal salt (FeCl3) has been studied by monitoring floc size, solution pH, and zeta potential. The kinetic features of the orthokinetic coagulation have been demonstrated in relation to coagulant dosages, solution pH and zeta potential. Humic acid removal and floc charge reduction increased with coagulant dosage. Adjusting the solution pH prior to coagulation had a substantial effect on the treatment performance. By pH adjustment to pH 6, the greatest humic acid removal (by coagulation and subsequent membrane filtration) and the largest floc size was achieved at a FeCl3 dosage of 200 mmol l−1. It is believed that the coagulation is characterised by competition between OH- ions and humic acid for ferric ions in the co-precipitation process. In acidic pH, where the concentration of OH- ions is low, humic acid molecules may compete more favourably for bonding sites in the co-precipitation, which leads to a more compact precipitation and a higher overall humic acid removal.


2004 ◽  
Vol 03 (06) ◽  
pp. 829-837
Author(s):  
SOON-JONG JEONG ◽  
JUNG-HYUK KOH ◽  
DONG-YOON LEE ◽  
JAE-SEOK LEE ◽  
MUN-SU HA ◽  
...  

This study presents the synthesis of nano-oxide-added Ag/Pd powders and its properties tolerable at temperatures above 1100°C for an electrode material utilized in multilayer ceramic devices. The powders of xAg/yPd powder around core cell TiO 2 were formed in a co-precipitation process of Ag and Pd in nano-oxide-dispersed solution, where Ag and Pd precursors are melted in HNO 3 acid. Reaction between ceramic and electrode layers with nanoparticle oxide powder allows internal stress to reduce and mechanical bonding strength to increase due to anchor effect. The densification of the nano-oxide-added electrode paste followed the TiO 2 solid state diffusion-controlled mechanism upon sintering process. The mechanical bonding strength and electrical conductivity were measured after sintering the electrode-printed sheets. As a result, very high adhesive strength over the piezoelectric ceramics' fracture strength and good electrical conductivity of more than 104/Ωcm could be obtained in the multilayer ferroelectric structure which is a form of stacking ceramics layer and electrode layer containing nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document